本文整理匯總了Python中cupy.zeros_like方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.zeros_like方法的具體用法?Python cupy.zeros_like怎麽用?Python cupy.zeros_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cupy
的用法示例。
在下文中一共展示了cupy.zeros_like方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _correlate_or_convolve
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def _correlate_or_convolve(input, weights, output, mode, cval, origin,
convolution=False):
origins, int_type = _check_nd_args(input, weights, mode, origin)
if weights.size == 0:
return cupy.zeros_like(input)
if convolution:
weights = weights[tuple([slice(None, None, -1)] * weights.ndim)]
origins = list(origins)
for i, wsize in enumerate(weights.shape):
origins[i] = -origins[i]
if wsize % 2 == 0:
origins[i] -= 1
origins = tuple(origins)
kernel = _get_correlate_kernel(mode, weights.shape, int_type,
origins, cval)
return _call_kernel(kernel, input, weights, output)
示例2: _rank_filter
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def _rank_filter(input, get_rank, size=None, footprint=None, output=None,
mode="reflect", cval=0.0, origin=0):
_, footprint, _ = _check_size_footprint_structure(
input.ndim, size, footprint, None, force_footprint=True)
origins, int_type = _check_nd_args(input, footprint, mode, origin,
'footprint')
if footprint.size == 0:
return cupy.zeros_like(input)
filter_size = int(footprint.sum())
rank = get_rank(filter_size)
if rank < 0 or rank >= filter_size:
raise RuntimeError('rank not within filter footprint size')
if rank == 0:
return _min_or_max_filter(input, None, footprint, None, output, mode,
cval, origins, 'min')
if rank == filter_size - 1:
return _min_or_max_filter(input, None, footprint, None, output, mode,
cval, origins, 'max')
kernel = _get_rank_kernel(filter_size, rank, mode, footprint.shape,
origins, float(cval), int_type)
return _call_kernel(kernel, input, footprint, output, None, bool)
示例3: forward_gpu
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def forward_gpu(self, inputs):
a, b = inputs
c = cp.zeros_like(a, 'float32')
chainer.cuda.elementwise(
'int32 j, raw T a, raw T b',
'raw T c',
'''
float* ap = (float*)&a[j * 3];
float* bp = (float*)&b[j * 3];
float* cp = (float*)&c[j * 3];
cp[0] = ap[1] * bp[2] - ap[2] * bp[1];
cp[1] = ap[2] * bp[0] - ap[0] * bp[2];
cp[2] = ap[0] * bp[1] - ap[1] * bp[0];
''',
'function',
)(
cp.arange(a.size / 3).astype('int32'), a, b, c,
)
return c,
示例4: _mean_driver
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def _mean_driver(input, labels, index, return_count=False, use_kern=False):
if use_kern:
return _ndimage_mean_kernel_2(input, labels, index,
return_count=return_count)
out = cupy.zeros_like(index, cupy.float64)
count = cupy.zeros_like(index, dtype=cupy.uint64)
sum, count = _ndimage_mean_kernel(input,
labels, index, index.size, out, count)
if return_count:
return sum / count, count
return sum / count
示例5: test_single_proc_single_dev
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def test_single_proc_single_dev(self):
comms = cuda.nccl.NcclCommunicator.initAll(1)
cuda.nccl.groupStart()
for comm in comms:
cuda.Device(comm.device_id()).use()
sendbuf = cupy.arange(10)
recvbuf = cupy.zeros_like(sendbuf)
comm.allReduce(sendbuf.data.ptr, recvbuf.data.ptr, 10,
cuda.nccl.NCCL_INT64, cuda.nccl.NCCL_SUM,
cuda.Stream.null.ptr)
cuda.nccl.groupEnd()
assert cupy.allclose(sendbuf, recvbuf)
示例6: test_zeros_like
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def test_zeros_like(self, xp, dtype, order):
a = xp.ndarray((2, 3, 4), dtype=dtype)
return xp.zeros_like(a, order=order)
示例7: test_zeros_like_subok
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def test_zeros_like_subok(self):
a = cupy.ndarray((2, 3, 4))
with pytest.raises(TypeError):
cupy.zeros_like(a, subok=True)
示例8: test_zeros_like_reshape
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def test_zeros_like_reshape(self, xp, dtype, order):
a = xp.ndarray((2, 3, 4), dtype=dtype)
return xp.zeros_like(a, order=order, shape=self.shape)
示例9: grad
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def grad(self, _cur_output, _next_output, _next_action,
_batch_tuples, _err_list, _err_count, _k):
# alloc
if self.config.gpu:
_cur_output.grad = cupy.zeros_like(_cur_output.data)
else:
_cur_output.grad = np.zeros_like(_cur_output.data)
# compute grad from each tuples
for i in range(len(_batch_tuples)):
# if use bootstrap and masked
if not _batch_tuples[i].mask[_k]:
continue
cur_action_value = \
_cur_output.data[i][_batch_tuples[i].action].tolist()
reward = _batch_tuples[i].reward
target_value = reward
# if not empty position, not terminal state
if _batch_tuples[i].next_state.in_game:
next_action_value = \
_next_output.data[i][_next_action[i]].tolist()
target_value += self.config.gamma * next_action_value
loss = cur_action_value - target_value
_cur_output.grad[i][_batch_tuples[i].action] = 2 * loss
_err_list[i] += abs(loss)
_err_count[i] += 1
示例10: _min_or_max_filter
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def _min_or_max_filter(input, size, footprint, structure, output, mode, cval,
origin, func):
# structure is used by morphology.grey_erosion() and grey_dilation()
# and not by the regular min/max filters
sizes, footprint, structure = _check_size_footprint_structure(
input.ndim, size, footprint, structure)
if sizes is not None:
# Seperable filter, run as a series of 1D filters
fltr = minimum_filter1d if func == 'min' else maximum_filter1d
output_orig = output
output = _get_output(output, input)
sizes = _fix_sequence_arg(sizes, input.ndim, 'size', int)
modes = _fix_sequence_arg(mode, input.ndim, 'mode', _check_mode)
origins = _fix_sequence_arg(origin, input.ndim, 'origin', int)
n_filters = sum(size > 1 for size in sizes)
if n_filters == 0:
output[...] = input[...]
return output
# We can't operate in-place efficiently, so use a 2-buffer system
temp = _get_output(output.dtype, input) if n_filters > 1 else None
first = True
iterator = zip(sizes, modes, origins)
for axis, (size, mode, origin) in enumerate(iterator):
if size <= 1:
continue
fltr(input, size, axis, output, mode, cval, origin)
input, output = output, temp if first else input
if isinstance(output_orig, cupy.ndarray) and input is not output_orig:
output_orig[...] = input
input = output_orig
return input
origins, int_type = _check_nd_args(input, footprint, mode, origin,
'footprint')
if structure is not None and structure.ndim != input.ndim:
raise RuntimeError('structure array has incorrect shape')
if footprint.size == 0:
return cupy.zeros_like(input)
center = tuple(x//2 + origin
for x, origin in zip(footprint.shape, origins))
kernel = _get_min_or_max_kernel(mode, footprint.shape, func,
origins, float(cval), int_type,
has_structure=structure is not None,
has_central_value=bool(footprint[center]))
return _call_kernel(kernel, input, footprint, output, structure,
weights_dtype=bool)
示例11: sum
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def sum(input, labels=None, index=None):
"""Calculates the sum of the values of an n-D image array, optionally
at specified sub-regions.
Args:
input (cupy.ndarray): Nd-image data to process.
labels (cupy.ndarray or None): Labels defining sub-regions in `input`.
If not None, must be same shape as `input`.
index (cupy.ndarray or None): `labels` to include in output. If None
(default), all values where `labels` is non-zero are used.
Returns:
sum (cupy.ndarray): sum of values, for each sub-region if
`labels` and `index` are specified.
.. seealso:: :func:`scipy.ndimage.sum`
"""
if not isinstance(input, cupy.ndarray):
raise TypeError('input must be cupy.ndarray')
if input.dtype in (cupy.complex64, cupy.complex128):
raise TypeError("cupyx.scipy.ndimage.sum doesnt support %{}".format(
input.dtype.type))
use_kern = False
# There is constraints on types because of atomicAdd() in CUDA.
if input.dtype not in [cupy.int32, cupy.float16, cupy.float32,
cupy.float64, cupy.uint32, cupy.uint64,
cupy.ulonglong]:
warnings.warn(
'Using the slower implmentation as '
'cupyx.scipy.ndimage.sum supports int32, float16, '
'float32, float64, uint32, uint64 as data types'
'for the fast implmentation', util.PerformanceWarning)
use_kern = True
if labels is None:
return input.sum()
if len(labels) == 0:
return cupy.array([], dtype=cupy.int64)
if not isinstance(labels, cupy.ndarray):
raise TypeError('label must be cupy.ndarray')
if index is None:
return input[labels != 0].sum()
input, labels = cupy.broadcast_arrays(input, labels)
if not isinstance(index, cupy.ndarray):
if not isinstance(index, int):
raise TypeError('index must be cupy.ndarray or a scalar int')
else:
return (input[labels == index]).sum()
out = cupy.zeros_like(index, dtype=cupy.float64)
# The following parameters for sum where determined using a Tesla P100.
if (input.size >= 262144 and index.size <= 4) or use_kern:
return _ndimage_sum_kernel_2(input, labels, index, out)
return _ndimage_sum_kernel(input, labels, index, index.size, out)
示例12: test_array_gen_cpy
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros_like [as 別名]
def test_array_gen_cpy(self):
xp = numpy if self.xp == 'numpy' else cupy
stream = None if not self.stream else cupy.cuda.Stream()
width, height, depth = self.dimensions
n_channel = self.n_channels
dim = 3 if depth != 0 else 2 if height != 0 else 1
shape = (depth, height, n_channel*width) if dim == 3 else \
(height, n_channel*width) if dim == 2 else \
(n_channel*width,)
# generate input data and allocate output buffer
if self.dtype in (numpy.float16, numpy.float32):
arr = xp.random.random(shape).astype(self.dtype)
kind = runtime.cudaChannelFormatKindFloat
else: # int
# randint() in NumPy <= 1.10 does not have the dtype argument...
arr = xp.random.randint(100, size=shape).astype(self.dtype)
if self.dtype in (numpy.int8, numpy.int16, numpy.int32):
kind = runtime.cudaChannelFormatKindSigned
else:
kind = runtime.cudaChannelFormatKindUnsigned
arr2 = xp.zeros_like(arr)
assert arr.flags['C_CONTIGUOUS']
assert arr2.flags['C_CONTIGUOUS']
# create a CUDA array
ch_bits = [0, 0, 0, 0]
for i in range(n_channel):
ch_bits[i] = arr.dtype.itemsize*8
# unpacking arguments using *ch_bits is not supported before PY35...
ch = ChannelFormatDescriptor(ch_bits[0], ch_bits[1], ch_bits[2],
ch_bits[3], kind)
cu_arr = CUDAarray(ch, width, height, depth)
# copy from input to CUDA array, and back to output
cu_arr.copy_from(arr, stream)
cu_arr.copy_to(arr2, stream)
# check input and output are identical
if stream is not None:
dev.synchronize()
assert (arr == arr2).all()