當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.zeros方法代碼示例

本文整理匯總了Python中cupy.zeros方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.zeros方法的具體用法?Python cupy.zeros怎麽用?Python cupy.zeros使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.zeros方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def __init__(self, parallel, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
        self.wave_len = wave_len
        self.wave_dif = wave_dif
        self.buffer_size = buffer_size
        self.loop_num = loop_num
        self.parallel = parallel
        self.window = cp.array([window for _ in range(parallel)])

        self.wave_buf = cp.zeros((parallel, wave_len+wave_dif), dtype=float)
        self.overwrap_buf = cp.zeros((parallel, wave_dif*buffer_size+(wave_len-wave_dif)), dtype=float)
        self.spectrum_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
        self.absolute_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
        
        self.phase = cp.zeros((parallel, self.wave_len), dtype=complex)
        self.phase += cp.random.random((parallel, self.wave_len))-0.5 + cp.random.random((parallel, self.wave_len))*1j - 0.5j
        self.phase[self.phase == 0] = 1
        self.phase /= cp.abs(self.phase) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:19,代碼來源:gla_gpu.py

示例2: auto_inverse

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def auto_inverse(self, whole_spectrum):
        whole_spectrum = np.copy(whole_spectrum).astype(complex)
        whole_spectrum[whole_spectrum < 1] = 1
        overwrap = self.buffer_size * 2
        height = whole_spectrum.shape[0]
        parallel_dif = (height-overwrap) // self.parallel
        if height < self.parallel*overwrap:
            raise Exception('voice length is too small to use gpu, or parallel number is too big')

        spec = [self.inverse(whole_spectrum[range(i, i+parallel_dif*self.parallel, parallel_dif), :]) for i in tqdm.tqdm(range(parallel_dif+overwrap))]
        spec = spec[overwrap:]
        spec = np.concatenate(spec, axis=1)
        spec = spec.reshape(-1, self.wave_len)

        #Below code don't consider wave_len and wave_dif, I'll fix.
        wave = np.fft.ifft(spec, axis=1).real
        pad = np.zeros((wave.shape[0], 2), dtype=float)
        wave = np.concatenate([wave, pad], axis=1)

        dst = np.zeros((wave.shape[0]+3)*self.wave_dif, dtype=float)
        for i in range(4):
            w = wave[range(i, wave.shape[0], 4),:]
            w = w.reshape(-1)
            dst[i*self.wave_dif:i*self.wave_dif+len(w)] += w
        return dst*0.5 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:27,代碼來源:gla_gpu.py

示例3: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def __init__(self, size_limit=0, device_id=None):
        super().__init__(size_limit=size_limit)
        if device_id is not None:
            os.environ['CUDA_VISIBLE_DEVICES'] = str(device_id)

        # warm up cupy
        try:
            import cupy
            cupy.zeros((10, 10)).sum()
        except ImportError:
            pass
        # warm up cudf
        try:
            import cudf
            import numpy as np
            import pandas as pd
            cudf.from_pandas(pd.DataFrame(np.zeros((10, 10))))
        except ImportError:
            pass 
開發者ID:mars-project,項目名稱:mars,代碼行數:21,代碼來源:objectholder.py

示例4: _non_maximum_suppression_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def _non_maximum_suppression_gpu(bbox, thresh, score=None, limit=None):
    if len(bbox) == 0:
        return cp.zeros((0,), dtype=np.int32)

    n_bbox = bbox.shape[0]

    if score is not None:
        order = score.argsort()[::-1].astype(np.int32)
    else:
        order = cp.arange(n_bbox, dtype=np.int32)

    sorted_bbox = bbox[order, :]
    selec, n_selec = _call_nms_kernel(
        sorted_bbox, thresh)
    selec = selec[:n_selec]
    selec = order[selec]
    if limit is not None:
        selec = selec[:limit]
    return selec 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:21,代碼來源:non_maximum_suppression.py

示例5: _call_nms_kernel

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def _call_nms_kernel(bbox, thresh):
    assert False, "Not supported."
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = cp.RawKernel(_nms_gpu_code, 'nms_kernel')
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:20,代碼來源:non_maximum_suppression.py

示例6: _non_maximum_suppression_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def _non_maximum_suppression_gpu(bbox, thresh, score=None, limit=None):
    if len(bbox) == 0:
        return cp.zeros((0,), dtype=np.int32)

    n_bbox = bbox.shape[0]

    if score is not None:
        order = score.argsort()[::-1].astype(np.int32)
    else:
        order = cp.arange(n_bbox, dtype=np.int32)

    sorted_bbox = bbox[order, :]
    selec, n_selec = _call_nms_kernel(
        sorted_bbox, thresh)
    selec = selec[:n_selec]
    selec = order[selec]
    if limit is not None:
        selec = selec[:limit]
    return cp.asnumpy(selec) 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:21,代碼來源:non_maximum_suppression.py

示例7: _call_nms_kernel

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def _call_nms_kernel(bbox, thresh):
    # PyTorch does not support unsigned long Tensor.
    # Doesn't matter,since it returns ndarray finally.
    # So I'll keep it unmodified.
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = _load_kernel('nms_kernel', _nms_gpu_code)
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:22,代碼來源:non_maximum_suppression.py

示例8: getnnz

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def getnnz(self, axis=None):
        """Returns the number of stored values, including explicit zeros.

        Args:
            axis: Not supported yet.

        Returns:
            int: The number of stored values.

        """
        if axis is None:
            return self.data.size
        else:
            raise ValueError

    # TODO(unno): Implement sorted_indices 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:compressed.py

示例9: getnnz

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def getnnz(self, axis=None):
        """Returns the number of stored values, including explicit zeros.

        Args:
            axis: Not supported yet.

        Returns:
            int: The number of stored values.

        """
        if axis is not None:
            raise NotImplementedError(
                'getnnz over an axis is not implemented for DIA format')

        m, n = self.shape
        nnz = core.ReductionKernel(
            'int32 offsets, int32 m, int32 n', 'int32 nnz',
            'offsets > 0 ? min(m, n - offsets) : min(m + offsets, n)',
            'a + b', 'nnz = a', '0', 'dia_nnz')(self.offsets, m, n)
        return int(nnz) 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:dia.py

示例10: diagonal

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def diagonal(self, k=0):
        """Returns the k-th diagonal of the matrix.

        Args:
            k (int, optional): Which diagonal to get, corresponding to elements
            a[i, i+k]. Default: 0 (the main diagonal).

        Returns:
            cupy.ndarray : The k-th diagonal.
        """
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            return cupy.empty(0, dtype=self.data.dtype)
        idx, = cupy.nonzero(self.offsets == k)
        first_col, last_col = max(0, k), min(rows + k, cols)
        if idx.size == 0:
            return cupy.zeros(last_col - first_col, dtype=self.data.dtype)
        return self.data[idx[0], first_col:last_col] 
開發者ID:cupy,項目名稱:cupy,代碼行數:20,代碼來源:dia.py

示例11: _label

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def _label(x, structure, y):
    elems = numpy.where(structure != 0)
    vecs = [elems[dm] - 1 for dm in range(x.ndim)]
    offset = vecs[0]
    for dm in range(1, x.ndim):
        offset = offset * 3 + vecs[dm]
    indxs = numpy.where(offset < 0)[0]
    dirs = [[vecs[dm][dr] for dm in range(x.ndim)] for dr in indxs]
    dirs = cupy.array(dirs, dtype=numpy.int32)
    ndirs = indxs.shape[0]
    y_shape = cupy.array(y.shape, dtype=numpy.int32)
    count = cupy.zeros(2, dtype=numpy.int32)
    _kernel_init()(x, y)
    _kernel_connect()(y_shape, dirs, ndirs, x.ndim, y, size=y.size)
    _kernel_count()(y, count, size=y.size)
    maxlabel = int(count[0])
    labels = cupy.empty(maxlabel, dtype=numpy.int32)
    _kernel_labels()(y, count, labels, size=y.size)
    _kernel_finalize()(maxlabel, cupy.sort(labels), y, size=y.size)
    return maxlabel 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:measurements.py

示例12: fit_custom

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def fit_custom(X, n_clusters, max_iter):
    assert X.ndim == 2

    n_samples = len(X)

    pred = cupy.zeros(n_samples)

    initial_indexes = cupy.random.choice(n_samples, n_clusters, replace=False)
    centers = X[initial_indexes]

    for _ in range(max_iter):
        distances = var_kernel(X[:, None, 0], X[:, None, 1],
                               centers[None, :, 1], centers[None, :, 0])
        new_pred = cupy.argmin(distances, axis=1)
        if cupy.all(new_pred == pred):
            break
        pred = new_pred

        i = cupy.arange(n_clusters)
        mask = pred == i[:, None]
        sums = sum_kernel(X, mask[:, :, None], axis=1)
        counts = count_kernel(mask, axis=1).reshape((n_clusters, 1))
        centers = sums / counts

    return centers, pred 
開發者ID:cupy,項目名稱:cupy,代碼行數:27,代碼來源:kmeans.py

示例13: test_cuda_array_interface_view

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def test_cuda_array_interface_view(self):
        arr = cupy.zeros(shape=(10, 20), dtype=cupy.float64)
        view = arr[::2, ::5]
        iface = view.__cuda_array_interface__
        assert (set(iface.keys()) ==
                set(['shape', 'typestr', 'data', 'version',
                     'strides', 'descr']))
        assert iface['shape'] == (5, 4)
        assert iface['typestr'] == '<f8'
        assert isinstance(iface['data'], tuple)
        assert len(iface['data']) == 2
        assert iface['data'][0] == arr.data.ptr
        assert not iface['data'][1]
        assert iface['version'] == 2
        assert iface['strides'] == (320, 40)
        assert iface['descr'] == [('', '<f8')] 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:test_ndarray.py

示例14: test_cuda_array_interface_zero_size

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def test_cuda_array_interface_zero_size(self):
        arr = cupy.zeros(shape=(10,), dtype=cupy.float64)
        view = arr[0:3:-1]
        iface = view.__cuda_array_interface__
        assert (set(iface.keys()) ==
                set(['shape', 'typestr', 'data', 'version',
                     'strides', 'descr']))
        assert iface['shape'] == (0,)
        assert iface['typestr'] == '<f8'
        assert isinstance(iface['data'], tuple)
        assert len(iface['data']) == 2
        assert iface['data'][0] == 0
        assert not iface['data'][1]
        assert iface['version'] == 2
        assert iface['strides'] is None
        assert iface['descr'] == [('', '<f8')] 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:test_ndarray.py

示例15: test_scatter_minmax_differnt_dtypes

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import zeros [as 別名]
def test_scatter_minmax_differnt_dtypes(self, src_dtype, dst_dtype):
        shape = (2, 3)
        a = cupy.zeros(shape, dtype=src_dtype)
        value = cupy.array(1, dtype=dst_dtype)
        slices = ([1, 1], slice(None))
        a.scatter_max(slices, value)
        numpy.testing.assert_almost_equal(
            a.get(),
            numpy.array([[0, 0, 0], [1, 1, 1]], dtype=src_dtype))

        a = cupy.ones(shape, dtype=src_dtype)
        value = cupy.array(0, dtype=dst_dtype)
        a.scatter_min(slices, value)
        numpy.testing.assert_almost_equal(
            a.get(),
            numpy.array([[1, 1, 1], [0, 0, 0]], dtype=src_dtype)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:test_ndarray_scatter.py


注:本文中的cupy.zeros方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。