當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.tensordot方法代碼示例

本文整理匯總了Python中cupy.tensordot方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.tensordot方法的具體用法?Python cupy.tensordot怎麽用?Python cupy.tensordot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.tensordot方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: convolve2d

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import tensordot [as 別名]
def convolve2d(in1, in2, mode='full'):
    """
        note only support H * W * N * 1 convolve 2d
    """
    in1 = in1.transpose(2, 3, 0, 1) # to N * C * H * W
    in2 = in2.transpose(2, 3, 0, 1)
    out_c, _, kh, kw = in2.shape
    n, _, h, w = in1.shape

    if mode == 'full':
        ph, pw = kh-1, kw-1
        out_h, out_w = h-kh+1+ph*2, w-kw+1+pw*2# TODO
    elif mode == 'valid':
        ph, pw = 0, 0
        out_h, out_w = h-kh+1, w-kw+1 # TODO
    else:
        raise NotImplementedError

    y = cp.empty((n, out_c, out_h, out_w), dtype=in1.dtype)

    col = im2col_gpu(in1, kh, kw, 1, 1, ph, pw)
    y = cp.tensordot(
            col, in2, ((1, 2, 3), (1, 2, 3))).astype(in1.dtype, copy=False)
    y = cp.rollaxis(y, 3, 1)
    return y.transpose(2, 3, 0, 1) 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:27,代碼來源:cuda_tools.py

示例2: tensorsolve

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import tensordot [as 別名]
def tensorsolve(a, b, axes=None):
    """Solves tensor equations denoted by ``ax = b``.

    Suppose that ``b`` is equivalent to ``cupy.tensordot(a, x)``.
    This function computes tensor ``x`` from ``a`` and ``b``.

    Args:
        a (cupy.ndarray): The tensor with ``len(shape) >= 1``
        b (cupy.ndarray): The tensor with ``len(shape) >= 1``
        axes (tuple of ints): Axes in ``a`` to reorder to the right
            before inversion.

    Returns:
        cupy.ndarray:
            The tensor with shape ``Q`` such that ``b.shape + Q == a.shape``.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.tensorsolve`
    """
    if axes is not None:
        allaxes = list(range(a.ndim))
        for k in axes:
            allaxes.remove(k)
            allaxes.insert(a.ndim, k)
        a = a.transpose(allaxes)

    oldshape = a.shape[-(a.ndim - b.ndim):]
    prod = cupy.core.internal.prod(oldshape)

    a = a.reshape(-1, prod)
    b = b.ravel()
    result = solve(a, b)
    return result.reshape(oldshape) 
開發者ID:cupy,項目名稱:cupy,代碼行數:41,代碼來源:solve.py

示例3: tensorinv

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import tensordot [as 別名]
def tensorinv(a, ind=2):
    """Computes the inverse of a tensor.

    This function computes tensor ``a_inv`` from tensor ``a`` such that
    ``tensordot(a_inv, a, ind) == I``, where ``I`` denotes the identity tensor.

    Args:
        a (cupy.ndarray):
            The tensor such that
            ``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
        ind (int):
            The positive number used in ``axes`` option of ``tensordot``.

    Returns:
        cupy.ndarray:
            The inverse of a tensor whose shape is equivalent to
            ``a.shape[ind:] + a.shape[:ind]``.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.tensorinv`
    """
    util._assert_cupy_array(a)

    if ind <= 0:
        raise ValueError('Invalid ind argument')
    oldshape = a.shape
    invshape = oldshape[ind:] + oldshape[:ind]
    prod = cupy.core.internal.prod(oldshape[ind:])
    a = a.reshape(prod, -1)
    a_inv = inv(a)
    return a_inv.reshape(*invshape) 
開發者ID:cupy,項目名稱:cupy,代碼行數:39,代碼來源:solve.py

示例4: binary_to_decimal

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import tensordot [as 別名]
def binary_to_decimal(X):
    """
    | This function takes :code:`X` of shape (n_images, L2, y, x) as an argument.
    | Supporse that :code:`X[k]` (0 <= k < n_images) can be represented as

    .. code-block:: none

        X[k] = [map_k[0], map_k[1], ..., map_k[L2-1]]

    where the shape of each map_k is (y, x).

    Then we calculate

    .. code-block:: none

        a[0] * map_k[0] + a[1] * map_k[1] + ... + a[L2-1] * map_k[L2-1]

    for each :code:`X[k]`, where :math:`a = [2^{L2-1}, 2^{L2-2}, ..., 2^{0}]`

    Therefore, the output shape must be (n_images, y, x)

    Parameters
    ----------
    X: xp.ndarray
        Feature maps
    """
    a = xp.arange(X.shape[1])[::-1]
    a = xp.power(2, a)
    return xp.tensordot(X, a, axes=([1], [0])) 
開發者ID:IshitaTakeshi,項目名稱:PCANet,代碼行數:31,代碼來源:pcanet.py


注:本文中的cupy.tensordot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。