當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.sqrt方法代碼示例

本文整理匯總了Python中cupy.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.sqrt方法的具體用法?Python cupy.sqrt怎麽用?Python cupy.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.sqrt方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: standard_deviation

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def standard_deviation(input, labels=None, index=None):
    """Calculates the standard deviation of the values of an n-D image array,
    optionally at specified sub-regions.

    Args:
        input (cupy.ndarray): Nd-image data to process.
        labels (cupy.ndarray or None): Labels defining sub-regions in `input`.
            If not None, must be same shape as `input`.
        index (cupy.ndarray or None): `labels` to include in output. If None
            (default), all values where `labels` is non-zero are used.

    Returns:
        standard_deviation (cupy.ndarray): standard deviation of values, for
        each sub-region if `labels` and `index` are specified.

    .. seealso:: :func:`scipy.ndimage.standard_deviation`
    """
    return cupy.sqrt(variance(input, labels, index)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:20,代碼來源:measurements.py

示例2: test_elementwise_trinary

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def test_elementwise_trinary(self):
        desc_a = cutensor.create_tensor_descriptor(self.a, ct.OP_SQRT)
        desc_b = cutensor.create_tensor_descriptor(self.b, ct.OP_TANH)
        desc_c = cutensor.create_tensor_descriptor(self.c, ct.OP_COS)

        d = cutensor.elementwise_trinary(
            self.alpha, self.a, desc_a, self.mode_a,
            self.beta, self.b, desc_b, self.mode_b,
            self.gamma, self.c, desc_c, self.mode_c,
            op_AB=ct.OP_ADD, op_ABC=ct.OP_MUL
        )

        testing.assert_allclose(
            (self.alpha * cupy.sqrt(self.a_transposed) +
             self.beta * cupy.tanh(self.b_transposed)) *
            self.gamma * cupy.cos(self.c),
            d,
            rtol=1e-6, atol=1e-6
        ) 
開發者ID:cupy,項目名稱:cupy,代碼行數:21,代碼來源:test_cutensor.py

示例3: hfft

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def hfft(a, n=None, axis=-1, norm=None):
    """Compute the FFT of a signal that has Hermitian symmetry.

    Args:
        a (cupy.ndarray): Array to be transform.
        n (None or int): Length of the transformed axis of the output. For
            ``n`` output points, ``n//2+1`` input points are necessary. If
            ``n`` is not given, it is determined from the length of the input
            along the axis specified by ``axis``.
        axis (int): Axis over which to compute the FFT.
        norm (None or ``"ortho"``): Keyword to specify the normalization mode.

    Returns:
        cupy.ndarray:
            The transformed array which shape is specified by ``n`` and type
            will convert to complex if the input is other. If ``n`` is not
            given, the length of the transformed axis is ``2*(m-1)`` where `m`
            is the length of the transformed axis of the input.

    .. seealso:: :func:`numpy.fft.hfft`
    """
    a = irfft(a.conj(), n, axis)
    return a * (a.shape[axis] if norm is None else
                cupy.sqrt(a.shape[axis], dtype=a.dtype)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:26,代碼來源:fft.py

示例4: extract_features

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def extract_features(vgg16, images, masks=None):
    mean = cp.array([103.939, 116.779, 123.68], 'float32')  # BGR
    images = images[:, ::-1] * 255 - mean[None, :, None, None]
    features = vgg16(images, layers=['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3']).values()

    if masks is None:
        masks = cp.ones((images.shape[0], images.shape[2], images.shape[3]), 'float32')
    else:
        masks = masks.data

    style_features = []
    for f in features:
        scale = masks.shape[-1] / f.shape[-1]
        m = cf.average_pooling_2d(masks[:, None, :, :], scale, scale).data
        dim = f.shape[1]

        m = m.reshape((m.shape[0], -1))
        f2 = f.transpose((0, 2, 3, 1))
        f2 = f2.reshape((f2.shape[0], -1, f2.shape[-1]))
        f2 *= cp.sqrt(m)[:, :, None]
        f2 = cf.batch_matmul(f2.transpose((0, 2, 1)), f2)
        f2 /= dim * m.sum(axis=1)[:, None, None]
        style_features.append(f2)

    return style_features 
開發者ID:hiroharu-kato,項目名稱:style_transfer_3d,代碼行數:27,代碼來源:train.py

示例5: corrcoef

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def corrcoef(a, y=None, rowvar=True, bias=None, ddof=None):
    """Returns the Pearson product-moment correlation coefficients of an array.

    Args:
        a (cupy.ndarray): Array to compute the Pearson product-moment
            correlation coefficients.
        y (cupy.ndarray): An additional set of variables and observations.
        rowvar (bool): If ``True``, then each row represents a variable, with
            observations in the columns. Otherwise, the relationship is
            transposed.
        bias (None): Has no effect, do not use.
        ddof (None): Has no effect, do not use.

    Returns:
        cupy.ndarray: The Pearson product-moment correlation coefficients of
        the input array.

    .. seealso:: :func:`numpy.corrcoef`

    """
    if bias is not None or ddof is not None:
        warnings.warn('bias and ddof have no effect and are deprecated',
                      DeprecationWarning)

    out = cov(a, y, rowvar)
    try:
        d = cupy.diag(out)
    except ValueError:
        return out / out

    stddev = cupy.sqrt(d.real)
    out /= stddev[:, None]
    out /= stddev[None, :]

    cupy.clip(out.real, -1, 1, out=out.real)
    if cupy.iscomplexobj(out):
        cupy.clip(out.imag, -1, 1, out=out.imag)

    return out 
開發者ID:cupy,項目名稱:cupy,代碼行數:41,代碼來源:correlation.py

示例6: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def __init__(self, alpha, fl=400, fftl=512):
        super(SpectralLoss, self).__init__()
        self.alpha = alpha[:,fl//2-1:-fl//2]
        self.fl = fl
        self.fftl = fftl
        self.norm = cupy.sqrt(self.fftl, dtype=cupy.float32) 
開發者ID:nii-yamagishilab,項目名稱:TSNetVocoder,代碼行數:8,代碼來源:spectralloss.py

示例7: test_22

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def test_22(self):
        N = 32
        M = 4
        Nd = 8
        D = cp.random.randn(Nd, Nd, M)
        D /= cp.sqrt(cp.sum(D**2, axis=(0, 1)))
        X0 = cp.zeros((N, N, M))
        xr = cp.random.randn(N, N, M)
        xp = cp.abs(xr) > 3
        X0[xp] = cp.random.randn(X0[xp].size)
        S = cp.sum(fftconv(D, X0), axis=2)
        lmbda = 1e-3
        opt = cbpdn.ConvBPDN.Options(
            {'Verbose': False, 'MaxMainIter': 500, 'RelStopTol': 1e-5,
             'rho': 5e-1, 'AutoRho': {'Enabled': False}})
        bp = cbpdn.ConvBPDN(D, S, lmbda, opt)
        Xp = bp.solve()
        epsilon = cp.linalg.norm(bp.reconstruct(Xp).squeeze() - S)
        opt = cbpdn.ConvMinL1InL2Ball.Options(
            {'Verbose': False, 'MaxMainIter': 500, 'RelStopTol': 1e-5,
             'rho': 2e2, 'RelaxParam': 1.0, 'AutoRho': {'Enabled': False}})
        bc = cbpdn.ConvMinL1InL2Ball(D, S, epsilon=epsilon, opt=opt)
        Xc = bc.solve()
        assert cp.linalg.norm(Xp - Xc) / cp.linalg.norm(Xp) < 1e-3
        assert cp.abs(cp.linalg.norm(Xp.ravel(), 1) -
                      cp.linalg.norm(Xc.ravel(), 1)) < 1e-3 
開發者ID:bwohlberg,項目名稱:sporco,代碼行數:28,代碼來源:test_cbpdn.py

示例8: root_mean_square_err

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def root_mean_square_err(expect, correct):
    return cupy.sqrt(mean_squared_error(expect, correct))


# Matrix operations 
開發者ID:ibm-research-tokyo,項目名稱:dybm,代碼行數:7,代碼來源:__init__.py

示例9: _exec_fft

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def _exec_fft(a, direction, value_type, norm, axis, overwrite_x,
              out_size=None, out=None, plan=None):
    fft_type = _convert_fft_type(a.dtype, value_type)

    if axis % a.ndim != a.ndim - 1:
        a = a.swapaxes(axis, -1)

    if a.base is not None or not a.flags.c_contiguous:
        a = a.copy()

    if out_size is None:
        out_size = a.shape[-1]

    batch = a.size // a.shape[-1]
    curr_plan = cufft.get_current_plan()
    if curr_plan is not None:
        if plan is None:
            plan = curr_plan
        else:
            raise RuntimeError('Use the cuFFT plan either as a context manager'
                               ' or as an argument.')
    if plan is None:
        devices = None if not config.use_multi_gpus else config._devices
        plan = cufft.Plan1d(out_size, fft_type, batch, devices=devices)
    else:
        # check plan validity
        if not isinstance(plan, cufft.Plan1d):
            raise ValueError('expected plan to have type cufft.Plan1d')
        if fft_type != plan.fft_type:
            raise ValueError('cuFFT plan dtype mismatch.')
        if out_size != plan.nx:
            raise ValueError('Target array size does not match the plan.',
                             out_size, plan.nx)
        if batch != plan.batch:
            raise ValueError('Batch size does not match the plan.')
        if config.use_multi_gpus != plan._use_multi_gpus:
            raise ValueError('Unclear if multiple GPUs are to be used or not.')

    if overwrite_x and value_type == 'C2C':
        out = a
    elif out is not None:
        # verify that out has the expected shape and dtype
        plan.check_output_array(a, out)
    else:
        out = plan.get_output_array(a)

    plan.fft(a, out, direction)

    sz = out.shape[-1]
    if fft_type == cufft.CUFFT_R2C or fft_type == cufft.CUFFT_D2Z:
        sz = a.shape[-1]
    if norm is None:
        if direction == cufft.CUFFT_INVERSE:
            out /= sz
    else:
        out /= math.sqrt(sz)

    if axis % a.ndim != a.ndim - 1:
        out = out.swapaxes(axis, -1)

    return out 
開發者ID:cupy,項目名稱:cupy,代碼行數:63,代碼來源:fft.py

示例10: mass2_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def mass2_gpu(ts, query):
    """
    Compute the distance profile for the given query over the given time 
    series. This require cupy to be installed.

    Parameters
    ----------
    ts : array_like
        The array to create a rolling window on.
    query : array_like
        The query.

    Returns
    -------
    An array of distances.

    Raises
    ------
    ValueError
        If ts is not a list or np.array.
        If query is not a list or np.array.
        If ts or query is not one dimensional.
    """
    def moving_mean_std_gpu(a, w):
        s = cp.concatenate([cp.array([0]), cp.cumsum(a)])
        sSq = cp.concatenate([cp.array([0]), cp.cumsum(a ** 2)])
        segSum = s[w:] - s[:-w]
        segSumSq = sSq[w:] -sSq[:-w]
    
        movmean = segSum / w
        movstd = cp.sqrt(segSumSq / w - (segSum / w) ** 2)
    
        return (movmean, movstd)

    x = cp.asarray(ts)
    y = cp.asarray(query)
    n = x.size
    m = y.size

    meany = cp.mean(y)
    sigmay = cp.std(y)
    
    meanx, sigmax = moving_mean_std_gpu(x, m)
    meanx = cp.concatenate([cp.ones(n - meanx.size), meanx])
    sigmax = cp.concatenate([cp.zeros(n - sigmax.size), sigmax])
    
    y = cp.concatenate((cp.flip(y, axis=0), cp.zeros(n - m)))
    
    X = cp.fft.fft(x)
    Y = cp.fft.fft(y)
    Z = X * Y
    z = cp.fft.ifft(Z)
    
    dist = 2 * (m - (z[m - 1:n] - m * meanx[m - 1:n] * meany) / 
                    (sigmax[m - 1:n] * sigmay))
    dist = cp.sqrt(dist)

    return cp.asnumpy(dist) 
開發者ID:matrix-profile-foundation,項目名稱:mass-ts,代碼行數:60,代碼來源:_mass_ts.py

示例11: mass2

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import sqrt [as 別名]
def mass2(ts, query):
    """
    Compute the distance profile for the given query over the given time 
    series. Optionally, the correlation coefficient can be returned.

    Parameters
    ----------
    ts : array_like
        The array to create a rolling window on.
    query : array_like
        The query.

    Returns
    -------
    An array of distances.

    Raises
    ------
    ValueError
        If ts is not a list or np.array.
        If query is not a list or np.array.
        If ts or query is not one dimensional.
    """
    ts, query = mtscore.precheck_series_and_query(ts, query)

    n = len(ts)
    m = len(query)
    x = ts
    y = query

    meany = np.mean(y)
    sigmay = np.std(y)
    
    meanx = mtscore.moving_average(x, m)
    meanx = np.append(np.ones([1, len(x) - len(meanx)]), meanx)
    sigmax = mtscore.moving_std(x, m)
    sigmax = np.append(np.zeros([1, len(x) - len(sigmax)]), sigmax)
    
    y = np.append(np.flip(y), np.zeros([1, n - m]))
    
    X = np.fft.fft(x)
    Y = np.fft.fft(y)
    Y.resize(X.shape)
    Z = X * Y
    z = np.fft.ifft(Z)
    
    dist = 2 * (m - (z[m - 1:n] - m * meanx[m - 1:n] * meany) / 
                    (sigmax[m - 1:n] * sigmay))
    dist = np.sqrt(dist)
    
    return dist 
開發者ID:matrix-profile-foundation,項目名稱:mass-ts,代碼行數:53,代碼來源:_mass_ts.py


注:本文中的cupy.sqrt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。