本文整理匯總了Python中cupy.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.ones方法的具體用法?Python cupy.ones怎麽用?Python cupy.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cupy
的用法示例。
在下文中一共展示了cupy.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def __init__(self, parallel, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
self.wave_len = wave_len
self.wave_dif = wave_dif
self.buffer_size = buffer_size
self.loop_num = loop_num
self.parallel = parallel
self.window = cp.array([window for _ in range(parallel)])
self.wave_buf = cp.zeros((parallel, wave_len+wave_dif), dtype=float)
self.overwrap_buf = cp.zeros((parallel, wave_dif*buffer_size+(wave_len-wave_dif)), dtype=float)
self.spectrum_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
self.absolute_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
self.phase = cp.zeros((parallel, self.wave_len), dtype=complex)
self.phase += cp.random.random((parallel, self.wave_len))-0.5 + cp.random.random((parallel, self.wave_len))*1j - 0.5j
self.phase[self.phase == 0] = 1
self.phase /= cp.abs(self.phase)
示例2: test_scatter_minmax_differnt_dtypes
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_scatter_minmax_differnt_dtypes(self, src_dtype, dst_dtype):
shape = (2, 3)
a = cupy.zeros(shape, dtype=src_dtype)
value = cupy.array(1, dtype=dst_dtype)
slices = ([1, 1], slice(None))
a.scatter_max(slices, value)
numpy.testing.assert_almost_equal(
a.get(),
numpy.array([[0, 0, 0], [1, 1, 1]], dtype=src_dtype))
a = cupy.ones(shape, dtype=src_dtype)
value = cupy.array(0, dtype=dst_dtype)
a.scatter_min(slices, value)
numpy.testing.assert_almost_equal(
a.get(),
numpy.array([[1, 1, 1], [0, 0, 0]], dtype=src_dtype))
示例3: test_scatter_minmax_differnt_dtypes_mask
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_scatter_minmax_differnt_dtypes_mask(self, src_dtype, dst_dtype):
shape = (2, 3)
a = cupy.zeros(shape, dtype=src_dtype)
value = cupy.array(1, dtype=dst_dtype)
slices = (numpy.array([[True, False, False], [False, True, True]]))
a.scatter_max(slices, value)
numpy.testing.assert_almost_equal(
a.get(),
numpy.array([[1, 0, 0], [0, 1, 1]], dtype=src_dtype))
a = cupy.ones(shape, dtype=src_dtype)
value = cupy.array(0, dtype=dst_dtype)
a.scatter_min(slices, value)
numpy.testing.assert_almost_equal(
a.get(),
numpy.array([[0, 1, 1], [1, 0, 0]], dtype=src_dtype))
示例4: setUp
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def setUp(self):
self.layout = libcudnn.CUDNN_TENSOR_NHWC
n = 16
x_c, y_c = 64, 64
x_h, x_w = 32, 32
y_h, y_w = x_h // self.stride, x_w // self.stride
self.pad = (self.ksize - 1) // 2
if self.layout == libcudnn.CUDNN_TENSOR_NHWC:
x_shape = (n, x_h, x_w, x_c)
y_shape = (n, y_h, y_w, y_c)
W_shape = (y_c, self.ksize, self.ksize, x_c)
else:
x_shape = (n, x_c, x_h, x_w)
y_shape = (n, y_c, y_h, y_w)
W_shape = (y_c, x_c, self.ksize, self.ksize)
self.x = cupy.ones(x_shape, dtype=self.dtype)
self.W = cupy.ones(W_shape, dtype=self.dtype)
self.y = cupy.empty(y_shape, dtype=self.dtype)
self.gx = cupy.empty(x_shape, dtype=self.dtype)
self.gW = cupy.empty(W_shape, dtype=self.dtype)
self.gy = cupy.ones(y_shape, dtype=self.dtype)
self._workspace_size = cudnn.get_max_workspace_size()
cudnn.set_max_workspace_size(0)
示例5: test_30
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_30(self):
N = 16
Nd = 5
M = 4
D = cp.random.randn(Nd, Nd, M)
s = cp.random.randn(N, N)
w = cp.ones(s.shape)
dt = cp.float32
opt = cbpdn.ConvBPDN.Options(
{'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True},
'DataType': dt})
lmbda = 1e-1
b = cbpdn.AddMaskSim(cbpdn.ConvBPDN, D, s, w, lmbda, opt=opt)
b.solve()
assert b.cbpdn.X.dtype == dt
assert b.cbpdn.Y.dtype == dt
assert b.cbpdn.U.dtype == dt
示例6: __init__
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def __init__(self, num_samples):
self._num_samples = num_samples
if not config.use_gpu:
self._distance_matrix = np.ones((num_samples, num_samples), dtype=np.float32) * np.inf
self._gram_matrix = np.ones((num_samples, num_samples), dtype=np.float32) * np.inf
self.prior_weights = np.zeros((num_samples, 1), dtype=np.float32)
else:
self._distance_matrix = cp.ones((num_samples, num_samples), dtype=cp.float32) * cp.inf
self._gram_matrix = cp.ones((num_samples, num_samples), dtype=cp.float32) * cp.inf
self.prior_weights = cp.zeros((num_samples, 1), dtype=cp.float32)
# find the minimum allowed sample weight. samples are discarded if their weights become lower
self.minimum_sample_weight = config.learning_rate * (1 - config.learning_rate)**(2*config.num_samples)
示例7: _find_gram_vector
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def _find_gram_vector(self, samplesf, new_sample, num_training_samples):
if config.use_gpu:
xp = cp.get_array_module(samplesf[0])
else:
xp = np
gram_vector = xp.inf * xp.ones((config.num_samples))
if num_training_samples > 0:
ip = 0.
for k in range(len(new_sample)):
samplesf_ = samplesf[k][:, :, :, :num_training_samples]
samplesf_ = samplesf_.reshape((-1, num_training_samples))
new_sample_ = new_sample[k].flatten()
ip += xp.real(2 * samplesf_.T.dot(xp.conj(new_sample_)))
gram_vector[:num_training_samples] = ip
return gram_vector
示例8: eye
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def eye(m, n=None, k=0, dtype='d', format=None):
"""Creates a sparse matrix with ones on diagonal.
Args:
m (int): Number of rows.
n (int or None): Number of columns. If it is ``None``,
it makes a square matrix.
k (int): Diagonal to place ones on.
dtype: Type of a matrix to create.
format (str or None): Format of the result, e.g. ``format="csr"``.
Returns:
cupyx.scipy.sparse.spmatrix: Created sparse matrix.
.. seealso:: :func:`scipy.sparse.eye`
"""
if n is None:
n = m
m, n = int(m), int(n)
if m == n and k == 0:
if format in ['csr', 'csc']:
indptr = cupy.arange(n + 1, dtype='i')
indices = cupy.arange(n, dtype='i')
data = cupy.ones(n, dtype=dtype)
if format == 'csr':
cls = csr.csr_matrix
else:
cls = csc.csc_matrix
return cls((data, indices, indptr), (n, n))
elif format == 'coo':
row = cupy.arange(n, dtype='i')
col = cupy.arange(n, dtype='i')
data = cupy.ones(n, dtype=dtype)
return coo.coo_matrix((data, (row, col)), (n, n))
diags = cupy.ones((1, max(0, min(m + k, n))), dtype=dtype)
return spdiags(diags, k, m, n).asformat(format)
示例9: minimum_filter
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def minimum_filter(input, size=None, footprint=None, output=None,
mode="reflect", cval=0.0, origin=0):
"""Multi-dimensional minimum filter.
Args:
input (cupy.ndarray): The input array.
size (int or sequence of int): One of ``size`` or ``footprint`` must be
provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
``footprint = cupy.ones(size)`` with ``size`` automatically made to
match the number of dimensions in ``input``.
footprint (cupy.ndarray): a boolean array which specifies which of the
elements within this shape will get passed to the filter function.
output (cupy.ndarray, dtype or None): The array in which to place the
output. Default is is same dtype as the input.
mode (str): The array borders are handled according to the given mode
(``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
``'wrap'``). Default is ``'reflect'``.
cval (scalar): Value to fill past edges of input if mode is
``'constant'``. Default is ``0.0``.
origin (int or sequence of int): The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
``(0,)*input.ndim``.
Returns:
cupy.ndarray: The result of the filtering.
.. seealso:: :func:`scipy.ndimage.minimum_filter`
"""
return _min_or_max_filter(input, size, footprint, None, output, mode,
cval, origin, 'min')
示例10: maximum_filter
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def maximum_filter(input, size=None, footprint=None, output=None,
mode="reflect", cval=0.0, origin=0):
"""Multi-dimensional maximum filter.
Args:
input (cupy.ndarray): The input array.
size (int or sequence of int): One of ``size`` or ``footprint`` must be
provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
``footprint = cupy.ones(size)`` with ``size`` automatically made to
match the number of dimensions in ``input``.
footprint (cupy.ndarray): a boolean array which specifies which of the
elements within this shape will get passed to the filter function.
output (cupy.ndarray, dtype or None): The array in which to place the
output. Default is is same dtype as the input.
mode (str): The array borders are handled according to the given mode
(``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
``'wrap'``). Default is ``'reflect'``.
cval (scalar): Value to fill past edges of input if mode is
``'constant'``. Default is ``0.0``.
origin (int or sequence of int): The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
``(0,)*input.ndim``.
Returns:
cupy.ndarray: The result of the filtering.
.. seealso:: :func:`scipy.ndimage.maximum_filter`
"""
return _min_or_max_filter(input, size, footprint, None, output, mode,
cval, origin, 'max')
示例11: _min_or_max_1d
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def _min_or_max_1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0,
origin=0, func='min'):
ftprnt = cupy.ones(size, dtype=bool)
ftprnt, origins = _convert_1d_args(input.ndim, ftprnt, origin, axis)
origins, int_type = _check_nd_args(input, ftprnt, mode, origins,
'footprint')
kernel = _get_min_or_max_kernel(mode, ftprnt.shape, func, origins,
float(cval), int_type, has_weights=False)
return _call_kernel(kernel, input, None, output, weights_dtype=bool)
示例12: median_filter
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def median_filter(input, size=None, footprint=None, output=None,
mode="reflect", cval=0.0, origin=0):
"""Multi-dimensional median filter.
Args:
input (cupy.ndarray): The input array.
size (int or sequence of int): One of ``size`` or ``footprint`` must be
provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
``footprint = cupy.ones(size)`` with ``size`` automatically made to
match the number of dimensions in ``input``.
footprint (cupy.ndarray): a boolean array which specifies which of the
elements within this shape will get passed to the filter function.
output (cupy.ndarray, dtype or None): The array in which to place the
output. Default is is same dtype as the input.
mode (str): The array borders are handled according to the given mode
(``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
``'wrap'``). Default is ``'reflect'``.
cval (scalar): Value to fill past edges of input if mode is
``'constant'``. Default is ``0.0``.
origin (int or sequence of int): The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
``(0,)*input.ndim``.
Returns:
cupy.ndarray: The result of the filtering.
.. seealso:: :func:`scipy.ndimage.median_filter`
"""
return _rank_filter(input, lambda fs: fs//2,
size, footprint, output, mode, cval, origin)
示例13: percentile_filter
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def percentile_filter(input, percentile, size=None, footprint=None,
output=None, mode="reflect", cval=0.0, origin=0):
"""Multi-dimensional percentile filter.
Args:
input (cupy.ndarray): The input array.
percentile (scalar): The percentile of the element to get (from ``0``
to ``100``). Can be negative, thus ``-20`` equals ``80``.
size (int or sequence of int): One of ``size`` or ``footprint`` must be
provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
``footprint = cupy.ones(size)`` with ``size`` automatically made to
match the number of dimensions in ``input``.
footprint (cupy.ndarray): a boolean array which specifies which of the
elements within this shape will get passed to the filter function.
output (cupy.ndarray, dtype or None): The array in which to place the
output. Default is is same dtype as the input.
mode (str): The array borders are handled according to the given mode
(``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
``'wrap'``). Default is ``'reflect'``.
cval (scalar): Value to fill past edges of input if mode is
``'constant'``. Default is ``0.0``.
origin (int or sequence of int): The origin parameter controls the
placement of the filter, relative to the center of the current
element of the input. Default of 0 is equivalent to
``(0,)*input.ndim``.
Returns:
cupy.ndarray: The result of the filtering.
.. seealso:: :func:`scipy.ndimage.percentile_filter`
"""
percentile = float(percentile)
if percentile < 0.0:
percentile += 100.0
if percentile < 0.0 or percentile > 100.0:
raise RuntimeError('invalid percentile')
if percentile == 100.0:
def get_rank(fs):
return fs - 1
else:
def get_rank(fs):
return int(float(fs) * percentile / 100.0)
return _rank_filter(input, get_rank,
size, footprint, output, mode, cval, origin)
示例14: _check_size_footprint_structure
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def _check_size_footprint_structure(ndim, size, footprint, structure,
stacklevel=3, force_footprint=False):
if structure is None and footprint is None:
if size is None:
raise RuntimeError("no footprint or filter size provided")
sizes = _fix_sequence_arg(size, ndim, 'size', int)
if force_footprint:
return None, cupy.ones(sizes, bool), None
return sizes, None, None
if size is not None:
warnings.warn("ignoring size because {} is set".format(
'structure' if footprint is None else 'footprint'),
UserWarning, stacklevel=stacklevel+1)
if footprint is not None:
footprint = cupy.array(footprint, bool, True, 'C')
if not footprint.any():
raise ValueError("all-zero footprint is not supported")
if structure is None:
if not force_footprint and footprint.all():
return footprint.shape, None, None
return None, footprint, None
structure = cupy.ascontiguousarray(structure)
if footprint is None:
footprint = cupy.ones(structure.shape, bool)
return None, footprint, structure
示例15: test_dirichlet
# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_dirichlet(self, alpha_dtype, dtype):
alpha = numpy.ones(self.alpha_shape, dtype=alpha_dtype)
self.check_distribution('dirichlet',
{'alpha': alpha}, dtype)