當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.ones方法代碼示例

本文整理匯總了Python中cupy.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.ones方法的具體用法?Python cupy.ones怎麽用?Python cupy.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def __init__(self, parallel, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
        self.wave_len = wave_len
        self.wave_dif = wave_dif
        self.buffer_size = buffer_size
        self.loop_num = loop_num
        self.parallel = parallel
        self.window = cp.array([window for _ in range(parallel)])

        self.wave_buf = cp.zeros((parallel, wave_len+wave_dif), dtype=float)
        self.overwrap_buf = cp.zeros((parallel, wave_dif*buffer_size+(wave_len-wave_dif)), dtype=float)
        self.spectrum_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
        self.absolute_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
        
        self.phase = cp.zeros((parallel, self.wave_len), dtype=complex)
        self.phase += cp.random.random((parallel, self.wave_len))-0.5 + cp.random.random((parallel, self.wave_len))*1j - 0.5j
        self.phase[self.phase == 0] = 1
        self.phase /= cp.abs(self.phase) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:19,代碼來源:gla_gpu.py

示例2: test_scatter_minmax_differnt_dtypes

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_scatter_minmax_differnt_dtypes(self, src_dtype, dst_dtype):
        shape = (2, 3)
        a = cupy.zeros(shape, dtype=src_dtype)
        value = cupy.array(1, dtype=dst_dtype)
        slices = ([1, 1], slice(None))
        a.scatter_max(slices, value)
        numpy.testing.assert_almost_equal(
            a.get(),
            numpy.array([[0, 0, 0], [1, 1, 1]], dtype=src_dtype))

        a = cupy.ones(shape, dtype=src_dtype)
        value = cupy.array(0, dtype=dst_dtype)
        a.scatter_min(slices, value)
        numpy.testing.assert_almost_equal(
            a.get(),
            numpy.array([[1, 1, 1], [0, 0, 0]], dtype=src_dtype)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:test_ndarray_scatter.py

示例3: test_scatter_minmax_differnt_dtypes_mask

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_scatter_minmax_differnt_dtypes_mask(self, src_dtype, dst_dtype):
        shape = (2, 3)
        a = cupy.zeros(shape, dtype=src_dtype)
        value = cupy.array(1, dtype=dst_dtype)
        slices = (numpy.array([[True, False, False], [False, True, True]]))
        a.scatter_max(slices, value)
        numpy.testing.assert_almost_equal(
            a.get(),
            numpy.array([[1, 0, 0], [0, 1, 1]], dtype=src_dtype))

        a = cupy.ones(shape, dtype=src_dtype)
        value = cupy.array(0, dtype=dst_dtype)
        a.scatter_min(slices, value)
        numpy.testing.assert_almost_equal(
            a.get(),
            numpy.array([[0, 1, 1], [1, 0, 0]], dtype=src_dtype)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:test_ndarray_scatter.py

示例4: setUp

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def setUp(self):
        self.layout = libcudnn.CUDNN_TENSOR_NHWC
        n = 16
        x_c, y_c = 64, 64
        x_h, x_w = 32, 32
        y_h, y_w = x_h // self.stride, x_w // self.stride
        self.pad = (self.ksize - 1) // 2
        if self.layout == libcudnn.CUDNN_TENSOR_NHWC:
            x_shape = (n, x_h, x_w, x_c)
            y_shape = (n, y_h, y_w, y_c)
            W_shape = (y_c, self.ksize, self.ksize, x_c)
        else:
            x_shape = (n, x_c, x_h, x_w)
            y_shape = (n, y_c, y_h, y_w)
            W_shape = (y_c, x_c, self.ksize, self.ksize)
        self.x = cupy.ones(x_shape, dtype=self.dtype)
        self.W = cupy.ones(W_shape, dtype=self.dtype)
        self.y = cupy.empty(y_shape, dtype=self.dtype)
        self.gx = cupy.empty(x_shape, dtype=self.dtype)
        self.gW = cupy.empty(W_shape, dtype=self.dtype)
        self.gy = cupy.ones(y_shape, dtype=self.dtype)
        self._workspace_size = cudnn.get_max_workspace_size()
        cudnn.set_max_workspace_size(0) 
開發者ID:cupy,項目名稱:cupy,代碼行數:25,代碼來源:test_cudnn.py

示例5: test_30

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_30(self):
        N = 16
        Nd = 5
        M = 4
        D = cp.random.randn(Nd, Nd, M)
        s = cp.random.randn(N, N)
        w = cp.ones(s.shape)
        dt = cp.float32
        opt = cbpdn.ConvBPDN.Options(
            {'Verbose': False, 'MaxMainIter': 20, 'AutoRho': {'Enabled': True},
             'DataType': dt})
        lmbda = 1e-1
        b = cbpdn.AddMaskSim(cbpdn.ConvBPDN, D, s, w, lmbda, opt=opt)
        b.solve()
        assert b.cbpdn.X.dtype == dt
        assert b.cbpdn.Y.dtype == dt
        assert b.cbpdn.U.dtype == dt 
開發者ID:bwohlberg,項目名稱:sporco,代碼行數:19,代碼來源:test_cbpdn.py

示例6: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def __init__(self, num_samples):
        self._num_samples = num_samples
        if not config.use_gpu:
            self._distance_matrix = np.ones((num_samples, num_samples), dtype=np.float32) * np.inf
            self._gram_matrix = np.ones((num_samples, num_samples), dtype=np.float32) * np.inf
            self.prior_weights = np.zeros((num_samples, 1), dtype=np.float32)
        else:
            self._distance_matrix = cp.ones((num_samples, num_samples), dtype=cp.float32) * cp.inf
            self._gram_matrix = cp.ones((num_samples, num_samples), dtype=cp.float32) * cp.inf
            self.prior_weights = cp.zeros((num_samples, 1), dtype=cp.float32)
        # find the minimum allowed sample weight. samples are discarded if their weights become lower
        self.minimum_sample_weight = config.learning_rate * (1 - config.learning_rate)**(2*config.num_samples) 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:14,代碼來源:sample_space_model.py

示例7: _find_gram_vector

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def _find_gram_vector(self, samplesf, new_sample, num_training_samples):
        if config.use_gpu:
            xp = cp.get_array_module(samplesf[0])
        else:
            xp = np
        gram_vector = xp.inf * xp.ones((config.num_samples))
        if num_training_samples > 0:
            ip = 0.
            for k in range(len(new_sample)):
                samplesf_ = samplesf[k][:, :, :, :num_training_samples]
                samplesf_ = samplesf_.reshape((-1, num_training_samples))
                new_sample_ = new_sample[k].flatten()
                ip += xp.real(2 * samplesf_.T.dot(xp.conj(new_sample_)))
            gram_vector[:num_training_samples] = ip
        return gram_vector 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:17,代碼來源:sample_space_model.py

示例8: eye

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def eye(m, n=None, k=0, dtype='d', format=None):
    """Creates a sparse matrix with ones on diagonal.

    Args:
        m (int): Number of rows.
        n (int or None): Number of columns. If it is ``None``,
            it makes a square matrix.
        k (int): Diagonal to place ones on.
        dtype: Type of a matrix to create.
        format (str or None): Format of the result, e.g. ``format="csr"``.

    Returns:
        cupyx.scipy.sparse.spmatrix: Created sparse matrix.

    .. seealso:: :func:`scipy.sparse.eye`

    """
    if n is None:
        n = m
    m, n = int(m), int(n)

    if m == n and k == 0:
        if format in ['csr', 'csc']:
            indptr = cupy.arange(n + 1, dtype='i')
            indices = cupy.arange(n, dtype='i')
            data = cupy.ones(n, dtype=dtype)
            if format == 'csr':
                cls = csr.csr_matrix
            else:
                cls = csc.csc_matrix
            return cls((data, indices, indptr), (n, n))

        elif format == 'coo':
            row = cupy.arange(n, dtype='i')
            col = cupy.arange(n, dtype='i')
            data = cupy.ones(n, dtype=dtype)
            return coo.coo_matrix((data, (row, col)), (n, n))

    diags = cupy.ones((1, max(0, min(m + k, n))), dtype=dtype)
    return spdiags(diags, k, m, n).asformat(format) 
開發者ID:cupy,項目名稱:cupy,代碼行數:42,代碼來源:construct.py

示例9: minimum_filter

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def minimum_filter(input, size=None, footprint=None, output=None,
                   mode="reflect", cval=0.0, origin=0):
    """Multi-dimensional minimum filter.

    Args:
        input (cupy.ndarray): The input array.
        size (int or sequence of int): One of ``size`` or ``footprint`` must be
            provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
            ``footprint = cupy.ones(size)`` with ``size`` automatically made to
            match the number of dimensions in ``input``.
        footprint (cupy.ndarray): a boolean array which specifies which of the
            elements within this shape will get passed to the filter function.
        output (cupy.ndarray, dtype or None): The array in which to place the
            output. Default is is same dtype as the input.
        mode (str): The array borders are handled according to the given mode
            (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
            ``'wrap'``). Default is ``'reflect'``.
        cval (scalar): Value to fill past edges of input if mode is
            ``'constant'``. Default is ``0.0``.
        origin (int or sequence of int): The origin parameter controls the
            placement of the filter, relative to the center of the current
            element of the input. Default of 0 is equivalent to
            ``(0,)*input.ndim``.
    Returns:
        cupy.ndarray: The result of the filtering.
    .. seealso:: :func:`scipy.ndimage.minimum_filter`
    """
    return _min_or_max_filter(input, size, footprint, None, output, mode,
                              cval, origin, 'min') 
開發者ID:cupy,項目名稱:cupy,代碼行數:31,代碼來源:filters.py

示例10: maximum_filter

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def maximum_filter(input, size=None, footprint=None, output=None,
                   mode="reflect", cval=0.0, origin=0):
    """Multi-dimensional maximum filter.

    Args:
        input (cupy.ndarray): The input array.
        size (int or sequence of int): One of ``size`` or ``footprint`` must be
            provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
            ``footprint = cupy.ones(size)`` with ``size`` automatically made to
            match the number of dimensions in ``input``.
        footprint (cupy.ndarray): a boolean array which specifies which of the
            elements within this shape will get passed to the filter function.
        output (cupy.ndarray, dtype or None): The array in which to place the
            output. Default is is same dtype as the input.
        mode (str): The array borders are handled according to the given mode
            (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
            ``'wrap'``). Default is ``'reflect'``.
        cval (scalar): Value to fill past edges of input if mode is
            ``'constant'``. Default is ``0.0``.
        origin (int or sequence of int): The origin parameter controls the
            placement of the filter, relative to the center of the current
            element of the input. Default of 0 is equivalent to
            ``(0,)*input.ndim``.
    Returns:
        cupy.ndarray: The result of the filtering.
    .. seealso:: :func:`scipy.ndimage.maximum_filter`
    """
    return _min_or_max_filter(input, size, footprint, None, output, mode,
                              cval, origin, 'max') 
開發者ID:cupy,項目名稱:cupy,代碼行數:31,代碼來源:filters.py

示例11: _min_or_max_1d

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def _min_or_max_1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0,
                   origin=0, func='min'):
    ftprnt = cupy.ones(size, dtype=bool)
    ftprnt, origins = _convert_1d_args(input.ndim, ftprnt, origin, axis)
    origins, int_type = _check_nd_args(input, ftprnt, mode, origins,
                                       'footprint')
    kernel = _get_min_or_max_kernel(mode, ftprnt.shape, func, origins,
                                    float(cval), int_type, has_weights=False)
    return _call_kernel(kernel, input, None, output, weights_dtype=bool) 
開發者ID:cupy,項目名稱:cupy,代碼行數:11,代碼來源:filters.py

示例12: median_filter

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def median_filter(input, size=None, footprint=None, output=None,
                  mode="reflect", cval=0.0, origin=0):
    """Multi-dimensional median filter.
    Args:
        input (cupy.ndarray): The input array.
        size (int or sequence of int): One of ``size`` or ``footprint`` must be
            provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
            ``footprint = cupy.ones(size)`` with ``size`` automatically made to
            match the number of dimensions in ``input``.
        footprint (cupy.ndarray): a boolean array which specifies which of the
            elements within this shape will get passed to the filter function.
        output (cupy.ndarray, dtype or None): The array in which to place the
            output. Default is is same dtype as the input.
        mode (str): The array borders are handled according to the given mode
            (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
            ``'wrap'``). Default is ``'reflect'``.
        cval (scalar): Value to fill past edges of input if mode is
            ``'constant'``. Default is ``0.0``.
        origin (int or sequence of int): The origin parameter controls the
            placement of the filter, relative to the center of the current
            element of the input. Default of 0 is equivalent to
            ``(0,)*input.ndim``.
    Returns:
        cupy.ndarray: The result of the filtering.
    .. seealso:: :func:`scipy.ndimage.median_filter`
    """
    return _rank_filter(input, lambda fs: fs//2,
                        size, footprint, output, mode, cval, origin) 
開發者ID:cupy,項目名稱:cupy,代碼行數:30,代碼來源:filters.py

示例13: percentile_filter

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def percentile_filter(input, percentile, size=None, footprint=None,
                      output=None, mode="reflect", cval=0.0, origin=0):
    """Multi-dimensional percentile filter.
    Args:
        input (cupy.ndarray): The input array.
        percentile (scalar): The percentile of the element to get (from ``0``
            to ``100``). Can be negative, thus ``-20`` equals ``80``.
        size (int or sequence of int): One of ``size`` or ``footprint`` must be
            provided. If ``footprint`` is given, ``size`` is ignored. Otherwise
            ``footprint = cupy.ones(size)`` with ``size`` automatically made to
            match the number of dimensions in ``input``.
        footprint (cupy.ndarray): a boolean array which specifies which of the
            elements within this shape will get passed to the filter function.
        output (cupy.ndarray, dtype or None): The array in which to place the
            output. Default is is same dtype as the input.
        mode (str): The array borders are handled according to the given mode
            (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
            ``'wrap'``). Default is ``'reflect'``.
        cval (scalar): Value to fill past edges of input if mode is
            ``'constant'``. Default is ``0.0``.
        origin (int or sequence of int): The origin parameter controls the
            placement of the filter, relative to the center of the current
            element of the input. Default of 0 is equivalent to
            ``(0,)*input.ndim``.
    Returns:
        cupy.ndarray: The result of the filtering.
    .. seealso:: :func:`scipy.ndimage.percentile_filter`
    """
    percentile = float(percentile)
    if percentile < 0.0:
        percentile += 100.0
    if percentile < 0.0 or percentile > 100.0:
        raise RuntimeError('invalid percentile')
    if percentile == 100.0:
        def get_rank(fs):
            return fs - 1
    else:
        def get_rank(fs):
            return int(float(fs) * percentile / 100.0)
    return _rank_filter(input, get_rank,
                        size, footprint, output, mode, cval, origin) 
開發者ID:cupy,項目名稱:cupy,代碼行數:43,代碼來源:filters.py

示例14: _check_size_footprint_structure

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def _check_size_footprint_structure(ndim, size, footprint, structure,
                                    stacklevel=3, force_footprint=False):
    if structure is None and footprint is None:
        if size is None:
            raise RuntimeError("no footprint or filter size provided")
        sizes = _fix_sequence_arg(size, ndim, 'size', int)
        if force_footprint:
            return None, cupy.ones(sizes, bool), None
        return sizes, None, None
    if size is not None:
        warnings.warn("ignoring size because {} is set".format(
            'structure' if footprint is None else 'footprint'),
            UserWarning, stacklevel=stacklevel+1)

    if footprint is not None:
        footprint = cupy.array(footprint, bool, True, 'C')
        if not footprint.any():
            raise ValueError("all-zero footprint is not supported")

    if structure is None:
        if not force_footprint and footprint.all():
            return footprint.shape, None, None
        return None, footprint, None

    structure = cupy.ascontiguousarray(structure)
    if footprint is None:
        footprint = cupy.ones(structure.shape, bool)
    return None, footprint, structure 
開發者ID:cupy,項目名稱:cupy,代碼行數:30,代碼來源:filters.py

示例15: test_dirichlet

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import ones [as 別名]
def test_dirichlet(self, alpha_dtype, dtype):
        alpha = numpy.ones(self.alpha_shape, dtype=alpha_dtype)
        self.check_distribution('dirichlet',
                                {'alpha': alpha}, dtype) 
開發者ID:cupy,項目名稱:cupy,代碼行數:6,代碼來源:test_distributions.py


注:本文中的cupy.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。