當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.int32方法代碼示例

本文整理匯總了Python中cupy.int32方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.int32方法的具體用法?Python cupy.int32怎麽用?Python cupy.int32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.int32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: do_eval

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def do_eval(args):   
    ced, charlist, chardict = load_encdec_from_config(args.config, args.model)
    
    if args.gpu is not None:
        chainer.cuda.Device(args.gpu).use()
        import cupy
        ced = ced.to_gpu(args.gpu)
        xp = cupy
    else:
        xp = np
    
    def enc(word):
        w_array=xp.array([chardict[c] for c in word], dtype=xp.int32)
        hx=ced.enc.compute_h((w_array,), train=False)
        return hx
    
    def dec(hx):
        decoded = ced.dec.decode(hx, length = 40, train = False)
        return "".join([charlist[int(idx)] for idx in decoded[0]])
    
    IPython.embed() 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:23,代碼來源:char_encdec.py

示例2: _non_maximum_suppression_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _non_maximum_suppression_gpu(bbox, thresh, score=None, limit=None):
    if len(bbox) == 0:
        return cp.zeros((0,), dtype=np.int32)

    n_bbox = bbox.shape[0]

    if score is not None:
        order = score.argsort()[::-1].astype(np.int32)
    else:
        order = cp.arange(n_bbox, dtype=np.int32)

    sorted_bbox = bbox[order, :]
    selec, n_selec = _call_nms_kernel(
        sorted_bbox, thresh)
    selec = selec[:n_selec]
    selec = order[selec]
    if limit is not None:
        selec = selec[:limit]
    return selec 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:21,代碼來源:non_maximum_suppression.py

示例3: _call_nms_kernel

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _call_nms_kernel(bbox, thresh):
    assert False, "Not supported."
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = cp.RawKernel(_nms_gpu_code, 'nms_kernel')
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:20,代碼來源:non_maximum_suppression.py

示例4: _non_maximum_suppression_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _non_maximum_suppression_gpu(bbox, thresh, score=None, limit=None):
    if len(bbox) == 0:
        return cp.zeros((0,), dtype=np.int32)

    n_bbox = bbox.shape[0]

    if score is not None:
        order = score.argsort()[::-1].astype(np.int32)
    else:
        order = cp.arange(n_bbox, dtype=np.int32)

    sorted_bbox = bbox[order, :]
    selec, n_selec = _call_nms_kernel(
        sorted_bbox, thresh)
    selec = selec[:n_selec]
    selec = order[selec]
    if limit is not None:
        selec = selec[:limit]
    return cp.asnumpy(selec) 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:21,代碼來源:non_maximum_suppression.py

示例5: _call_nms_kernel

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _call_nms_kernel(bbox, thresh):
    # PyTorch does not support unsigned long Tensor.
    # Doesn't matter,since it returns ndarray finally.
    # So I'll keep it unmodified.
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = _load_kernel('nms_kernel', _nms_gpu_code)
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:22,代碼來源:non_maximum_suppression.py

示例6: _label

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _label(x, structure, y):
    elems = numpy.where(structure != 0)
    vecs = [elems[dm] - 1 for dm in range(x.ndim)]
    offset = vecs[0]
    for dm in range(1, x.ndim):
        offset = offset * 3 + vecs[dm]
    indxs = numpy.where(offset < 0)[0]
    dirs = [[vecs[dm][dr] for dm in range(x.ndim)] for dr in indxs]
    dirs = cupy.array(dirs, dtype=numpy.int32)
    ndirs = indxs.shape[0]
    y_shape = cupy.array(y.shape, dtype=numpy.int32)
    count = cupy.zeros(2, dtype=numpy.int32)
    _kernel_init()(x, y)
    _kernel_connect()(y_shape, dirs, ndirs, x.ndim, y, size=y.size)
    _kernel_count()(y, count, size=y.size)
    maxlabel = int(count[0])
    labels = cupy.empty(maxlabel, dtype=numpy.int32)
    _kernel_labels()(y, count, labels, size=y.size)
    _kernel_finalize()(maxlabel, cupy.sort(labels), y, size=y.size)
    return maxlabel 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:measurements.py

示例7: _kernel_finalize

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _kernel_finalize():
    return cupy.ElementwiseKernel(
        'int32 maxlabel', 'raw int32 labels, raw Y y',
        '''
        if (y[i] < 0) {
            y[i] = 0;
            continue;
        }
        int yi = y[i];
        int j_min = 0;
        int j_max = maxlabel - 1;
        int j = (j_min + j_max) / 2;
        while (j_min < j_max) {
            if (yi == labels[j]) break;
            if (yi < labels[j]) j_max = j - 1;
            else j_min = j + 1;
            j = (j_min + j_max) / 2;
        }
        y[i] = j + 1;
        ''',
        'cupyx_nd_label_finalize') 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:measurements.py

示例8: test_template_specialization

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def test_template_specialization(self):
        if self.backend == 'nvcc':
            self.skipTest('nvcc does not support template specialization')

        # compile code
        name_expressions = ['my_sqrt<int>', 'my_sqrt<float>',
                            'my_sqrt<complex<double>>', 'my_func']
        mod = cupy.RawModule(code=test_cxx_template, options=('--std=c++11',),
                             name_expressions=name_expressions)

        dtypes = (cupy.int32, cupy.float32, cupy.complex128, cupy.float64)
        for ker_T, dtype in zip(name_expressions, dtypes):
            # get specialized kernels
            ker = mod.get_function(ker_T)

            # prepare inputs & expected outputs
            in_arr = cupy.testing.shaped_random((10,), dtype=dtype)
            out_arr = in_arr**2

            # run
            ker((1,), (10,), (in_arr, 10))

            # check results
            assert cupy.allclose(in_arr, out_arr) 
開發者ID:cupy,項目名稱:cupy,代碼行數:26,代碼來源:test_raw.py

示例9: _call_nms_kernel

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _call_nms_kernel(bbox, thresh):
    n_bbox = bbox.shape[0]
    threads_per_block = 64
    col_blocks = np.ceil(n_bbox / threads_per_block).astype(np.int32)
    blocks = (col_blocks, col_blocks, 1)
    threads = (threads_per_block, 1, 1)

    mask_dev = cp.zeros((n_bbox * col_blocks,), dtype=np.uint64)
    bbox = cp.ascontiguousarray(bbox, dtype=np.float32)
    kern = cp.RawKernel(_nms_gpu_code, 'nms_kernel')
    kern(blocks, threads, args=(cp.int32(n_bbox), cp.float32(thresh),
                                bbox, mask_dev))

    mask_host = mask_dev.get()
    selection, n_selec = _nms_gpu_post(
        mask_host, n_bbox, threads_per_block, col_blocks)
    return selection, n_selec 
開發者ID:chainer,項目名稱:chainercv,代碼行數:19,代碼來源:non_maximum_suppression.py

示例10: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def __init__(self, V, Hw, Hs):
        super(CharDec, self).__init__(
            lin_out = L.Linear(Hs, Hw),
            nstep_dec = L.NStepLSTM(1, Hw, Hs, dropout = 0.5)
        )
#         self.start_id = V
#         self.H = H
#         self.eos_id = V #self.xp.array([V], dtype = self.xp.int32) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:10,代碼來源:char_encdec.py

示例11: append_eos_id

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def append_eos_id(self, a):
        return self.xp.concatenate((a, self.xp.array([self.eos_id], dtype = self.xp.int32)), axis = 0) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:4,代碼來源:char_encdec.py

示例12: decode

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def decode(self, hx, length = 10, verbose = False, train = False):
        hx_dec = hx
        cx_dec = None
#         prev_word = xp.array([self.start_id], dtype = xp.float32)
        nb_inpt = hx.data.shape[1]
        result = [[] for _ in xrange(nb_inpt)]
        finished = [False] * nb_inpt
        for i in xrange(length):
            logits = self.lin_out(hx_dec.reshape(-1, self.H))
            if verbose:
                print "logits", i
                print logits.data
            prev_word = self.xp.argmax(logits.data, axis = 1).astype(self.xp.int32)
            for num_inpt in xrange(nb_inpt):
                if prev_word[num_inpt] == self.eos_id:
                    finished[num_inpt] = True
                if not finished[num_inpt]:
                    result[num_inpt].append(prev_word[num_inpt])
                if finished[num_inpt]:
                    prev_word[num_inpt] = 0
                    
            if verbose:
                print "prev_word", prev_word
#             print prev_word
            prev_word_emb = F.split_axis(self.c_emb_dec(prev_word), len(prev_word), axis = 0, force_tuple = True)
            hx_dec, cx_dec, xs_dec = self.nstep_dec(hx_dec, cx_dec, prev_word_emb, train = train)
        return result 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:29,代碼來源:char_encdec.py

示例13: encode_voc_list

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def encode_voc_list(voc_list, charlist):
    chardict = {}
    for num, c in enumerate(charlist):
        chardict[c] = num
        
    dataset = []
    for w in voc_list:
        encoded = [chardict[c] for c in w]
        dataset.append(np.array(encoded, dtype = np.int32))
    
    return dataset 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:13,代碼來源:char_encdec.py

示例14: _non_maximum_suppression_cpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def _non_maximum_suppression_cpu(bbox, thresh, score=None, limit=None):
    if len(bbox) == 0:
        return np.zeros((0,), dtype=np.int32)

    if score is not None:
        order = score.argsort()[::-1]
        bbox = bbox[order]
    bbox_area = np.prod(bbox[:, 2:] - bbox[:, :2], axis=1)

    selec = np.zeros(bbox.shape[0], dtype=bool)
    for i, b in enumerate(bbox):
        tl = np.maximum(b[:2], bbox[selec, :2])
        br = np.minimum(b[2:], bbox[selec, 2:])
        area = np.prod(br - tl, axis=1) * (tl < br).all(axis=1)

        iou = area / (bbox_area[i] + bbox_area[selec] - area)
        if (iou >= thresh).any():
            continue

        selec[i] = True
        if limit is not None and np.count_nonzero(selec) >= limit:
            break

    selec = np.where(selec)[0]
    if score is not None:
        selec = order[selec]
    return selec.astype(np.int32) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:29,代碼來源:non_maximum_suppression.py

示例15: upcast

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import int32 [as 別名]
def upcast(*args):
    """Returns the nearest supported sparse dtype for the
    combination of one or more types.

    upcast(t0, t1, ..., tn) -> T  where T is a supported dtype

    Examples:
        >>> upcast('int32')
        <type 'numpy.int32'>
        >>> upcast('int32','float32')
        <type 'numpy.float64'>
        >>> upcast('bool',float)
        <type 'numpy.complex128'>
    """

    t = _upcast_memo.get(args)
    if t is not None:
        return t

    upcast = cupy.find_common_type(args, [])

    for t in supported_dtypes:
        if cupy.can_cast(upcast, t):
            _upcast_memo[args] = t
            return t

    raise TypeError('no supported conversion for types: %r' % (args,)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:29,代碼來源:sputils.py


注:本文中的cupy.int32方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。