當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.get_array_module方法代碼示例

本文整理匯總了Python中cupy.get_array_module方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.get_array_module方法的具體用法?Python cupy.get_array_module怎麽用?Python cupy.get_array_module使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.get_array_module方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cfft2

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def cfft2(x):
    in_shape = x.shape
    # if both dimensions are odd
    if config.use_gpu:
        xp = cp.get_array_module(x)
    else:
        xp = np
    if in_shape[0] % 2 == 1 and in_shape[1] % 2 == 1:
        xf = xp.fft.fftshift(xp.fft.fftshift(fft2(x), 0), 1).astype(xp.complex64)
    else:
        out_shape = list(in_shape)
        out_shape[0] =  in_shape[0] + (in_shape[0] + 1) % 2
        out_shape[1] =  in_shape[1] + (in_shape[1] + 1) % 2
        out_shape = tuple(out_shape)
        xf = xp.zeros(out_shape, dtype=xp.complex64)
        xf[:in_shape[0], :in_shape[1]] = xp.fft.fftshift(xp.fft.fftshift(fft2(x), 0), 1).astype(xp.complex64)
        if out_shape[0] != in_shape[0]:
            xf[-1,:] = xp.conj(xf[0,::-1])
        if out_shape[1] != in_shape[1]:
            xf[:,-1] = xp.conj(xf[::-1,0])
    return xf 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:23,代碼來源:fourier_tools.py

示例2: _init_proj_matrix

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def _init_proj_matrix(self, init_sample, compressed_dim, proj_method):
        """
            init the projection matrix
        """
        if config.use_gpu:
            xp = cp.get_array_module(init_sample[0])
        else:
            xp = np
        x = [xp.reshape(x, (-1, x.shape[2])) for x in init_sample]
        x = [z - z.mean(0) for z in x]
        proj_matrix_ = []
        if config.proj_init_method == 'pca':
            for x_, compressed_dim_  in zip(x, compressed_dim):
                proj_matrix, _, _ = xp.linalg.svd(x_.T.dot(x_))
                proj_matrix = proj_matrix[:, :compressed_dim_]
                proj_matrix_.append(proj_matrix)
        elif config.proj_init_method == 'rand_uni':
            for x_, compressed_dim_ in zip(x, compressed_dim):
                proj_matrix = xp.random.uniform(size=(x_.shape[1], compressed_dim_))
                proj_matrix /= xp.sqrt(xp.sum(proj_matrix**2, axis=0, keepdims=True))
                proj_matrix_.append(proj_matrix)
        return proj_matrix_ 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:24,代碼來源:tracker.py

示例3: get_array_module

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def get_array_module(*args):
    """Gets an appropriate one from :mod:`numpy` or :mod:`cupy`.

    This is almost equivalent to :func:`cupy.get_array_module`. The differences
    are that this function can be used even if CUDA is not available and that
    it will return their data arrays' array module for
    :class:`~chainer.Variable` arguments.

    .. deprecated:: v5.0.0

        This API is deprecated. Please use
        :func:`~chainer.backend.get_array_module` instead.

    Args:
        args: Values to determine whether NumPy or CuPy should be used.

    Returns:
        module: :mod:`cupy` or :mod:`numpy` is returned based on the types of
        the arguments.

    """
    return chainer.backend.get_array_module(*args) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:cuda.py

示例4: train_gmm

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def train_gmm(X, max_iter, tol, means, covariances):
    xp = cupy.get_array_module(X)
    lower_bound = -np.infty
    converged = False
    weights = xp.array([0.5, 0.5], dtype=np.float32)
    inv_cov = 1 / xp.sqrt(covariances)

    for n_iter in range(max_iter):
        prev_lower_bound = lower_bound
        log_prob_norm, log_resp = e_step(X, inv_cov, means, weights)
        weights, means, covariances = m_step(X, xp.exp(log_resp))
        inv_cov = 1 / xp.sqrt(covariances)
        lower_bound = log_prob_norm
        change = lower_bound - prev_lower_bound
        if abs(change) < tol:
            converged = True
            break

    if not converged:
        print('Failed to converge. Increase max-iter or tol.')

    return inv_cov, means, weights, covariances 
開發者ID:cupy,項目名稱:cupy,代碼行數:24,代碼來源:gmm.py

示例5: draw

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def draw(X, pred, means, covariances, output):
    xp = cupy.get_array_module(X)
    for i in range(2):
        labels = X[pred == i]
        if xp is cupy:
            labels = labels.get()
        plt.scatter(labels[:, 0], labels[:, 1], c=np.random.rand(1, 3))
    if xp is cupy:
        means = means.get()
        covariances = covariances.get()
    plt.scatter(means[:, 0], means[:, 1], s=120, marker='s', facecolors='y',
                edgecolors='k')
    x = np.linspace(-5, 5, 1000)
    y = np.linspace(-5, 5, 1000)
    X, Y = np.meshgrid(x, y)
    for i in range(2):
        dist = stats.multivariate_normal(means[i], covariances[i])
        Z = dist.pdf(np.stack([X, Y], axis=-1))
        plt.contour(X, Y, Z)
    plt.savefig(output) 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:gmm.py

示例6: fit

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def fit(A, b, tol, max_iter):
    # Note that this function works even tensors 'A' and 'b' are NumPy or CuPy
    # arrays.
    xp = cupy.get_array_module(A)
    x = xp.zeros_like(b, dtype=np.float64)
    r0 = b - xp.dot(A, x)
    p = r0
    for i in range(max_iter):
        a = xp.inner(r0, r0) / xp.inner(p, xp.dot(A, p))
        x += a * p
        r1 = r0 - a * xp.dot(A, p)
        if xp.linalg.norm(r1) < tol:
            return x
        b = xp.inner(r1, r1) / xp.inner(r0, r0)
        p = r1 + b * p
        r0 = r1
    print('Failed to converge. Increase max-iter or tol.')
    return x 
開發者ID:cupy,項目名稱:cupy,代碼行數:20,代碼來源:cg.py

示例7: cfft2

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def cfft2(x):
    in_shape = x.shape
    # if both dimensions are odd
    if gpu_config.use_gpu:
        xp = cp.get_array_module(x)
    else:
        xp = np
    if in_shape[0] % 2 == 1 and in_shape[1] % 2 == 1:
        xf = xp.fft.fftshift(xp.fft.fftshift(fft2(x), 0), 1).astype(xp.complex64)
    else:
        out_shape = list(in_shape)
        out_shape[0] =  in_shape[0] + (in_shape[0] + 1) % 2
        out_shape[1] =  in_shape[1] + (in_shape[1] + 1) % 2
        out_shape = tuple(out_shape)
        xf = xp.zeros(out_shape, dtype=xp.complex64)
        xf[:in_shape[0], :in_shape[1]] = xp.fft.fftshift(xp.fft.fftshift(fft2(x), 0), 1).astype(xp.complex64)
        if out_shape[0] != in_shape[0]:
            xf[-1,:] = xp.conj(xf[0,::-1])
        if out_shape[1] != in_shape[1]:
            xf[:,-1] = xp.conj(xf[::-1,0])
    return xf 
開發者ID:fengyang95,項目名稱:pyCFTrackers,代碼行數:23,代碼來源:fourier_tools.py

示例8: _init_proj_matrix

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def _init_proj_matrix(self, init_sample, compressed_dim, proj_method):
        """
            init the projection matrix
        """
        if gpu_config.use_gpu:
            xp = cp.get_array_module(init_sample[0])
        else:
            xp = np
        x = [xp.reshape(x, (-1, x.shape[2])) for x in init_sample]
        x = [z - z.mean(0) for z in x]
        proj_matrix_ = []
        if self.config.proj_init_method == 'pca':
            for x_, compressed_dim_  in zip(x, compressed_dim):
                proj_matrix, _, _ = xp.linalg.svd(x_.T.dot(x_))
                proj_matrix = proj_matrix[:, :compressed_dim_]
                proj_matrix_.append(proj_matrix)
        elif self.config.proj_init_method == 'rand_uni':
            for x_, compressed_dim_ in zip(x, compressed_dim):
                proj_matrix = xp.random.uniform(size=(x_.shape[1], compressed_dim_))
                proj_matrix /= xp.sqrt(xp.sum(proj_matrix**2, axis=0, keepdims=True))
                proj_matrix_.append(proj_matrix)
        return proj_matrix_ 
開發者ID:fengyang95,項目名稱:pyCFTrackers,代碼行數:24,代碼來源:tracker.py

示例9: get_array_module

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def get_array_module(x):
    """Returns the array module for `x`.

    Args:
        x (dezero.Variable or numpy.ndarray or cupy.ndarray): Values to
            determine whether NumPy or CuPy should be used.

    Returns:
        module: `cupy` or `numpy` is returned based on the argument.
    """
    if isinstance(x, Variable):
        x = x.data

    if not gpu_enable:
        return np
    xp = cp.get_array_module(x)
    return xp 
開發者ID:oreilly-japan,項目名稱:deep-learning-from-scratch-3,代碼行數:19,代碼來源:cuda.py

示例10: circ_mul_v

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def circ_mul_v(circ,v,eigs=None):
    ''' multiply a circulant matrix A by multi vector v.

    Args:
        circ (ndarray): representation of the multilevel circulant matrix A, i.e.
             the first column of A in proper shape.
        v (ndarray): vector to be multiplied. Should be reshaped to the same shape
             as circ. Should be the same reshape order (column first/row first) as circ.
    Returns:
        result of multiplication.
    '''
    if use_gpu > 0:
        import cupy
        xp = cupy.get_array_module(circ)
    else:
        xp = np
    
    if eigs is None:
        eigs = circ_eigs(circ)
    tmp = xp.real(xp.fft.ifft2(xp.fft.fft2(v,norm='ortho')*eigs,norm='ortho'))
    if xp is cupy:
        return tmp.astype(xp.float32)
    else:
        return tmp 
開發者ID:igp-gravity,項目名稱:geoist,代碼行數:26,代碼來源:toeplitz.py

示例11: gradient_loss

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def gradient_loss(generated, truth):
	"""

	:param generated: generated image by the generator at any scale
	:param truth: The ground truth image at that scale
	:return: GDL loss
	"""
	xp = cp.get_array_module(generated.data)
	n, c, h, w = generated.shape
	wx = xp.array([[[1, -1]]]*c, ndmin=4).astype(xp.float32)
	wy = xp.array([[[1], [-1]]]*c, ndmin=4).astype(xp.float32)

	d_gx = F.convolution_2d(generated, wx)
	d_gy = F.convolution_2d(generated, wy)

	d_tx = F.convolution_2d(truth, wx)
	d_ty = F.convolution_2d(truth, wy)

	return (F.sum(F.absolute(d_gx - d_tx)) + F.sum(F.absolute(d_gy - d_ty))) 
開發者ID:alokwhitewolf,項目名稱:Video-frame-prediction-by-multi-scale-GAN,代碼行數:21,代碼來源:loss.py

示例12: get_array_module

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def get_array_module(array):
    """Gets an appropriate module from :mod:`numpy` or :mod:`cupy`.

    This is almost equivalent to :func:`cupy.get_array_module`. The differences
    are that this function can be used even if cupy is not available.

    Args:
        array: Input array.

    Returns:
        module: :mod:`cupy` or :mod:`numpy` is returned based on input.
    """
    if config.cupy_enabled:
        return cp.get_array_module(array)
    else:
        return np 
開發者ID:mikgroup,項目名稱:sigpy,代碼行數:18,代碼來源:backend.py

示例13: get_array_module

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def get_array_module(x):
    if cupy is not None:
        return cupy.get_array_module(x)
    else:
        return numpy 
開發者ID:artetxem,項目名稱:vecmap,代碼行數:7,代碼來源:cupy_utils.py

示例14: fft2

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def fft2(x):
    if config.use_gpu:
        xp = cp.get_array_module(x)
    else:
        xp = np
    return xp.fft.fft(xp.fft.fft(x, axis=1), axis=0).astype(xp.complex64)
    # return fft(fft(x, axis=1), axis=0) 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:9,代碼來源:fourier_tools.py

示例15: ifft2

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import get_array_module [as 別名]
def ifft2(x):
    if config.use_gpu:
        xp = cp.get_array_module(x)
    else:
        xp = np
    return xp.fft.ifft(xp.fft.ifft(x, axis=1), axis=0).astype(xp.complex64)
    # return ifft(ifft(x, axis=1), axis=0) 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:9,代碼來源:fourier_tools.py


注:本文中的cupy.get_array_module方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。