當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.empty方法代碼示例

本文整理匯總了Python中cupy.empty方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.empty方法的具體用法?Python cupy.empty怎麽用?Python cupy.empty使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.empty方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: use_single_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def use_single_gpu():
    """ Use single GPU device.

    If CUDA_VISIBLE_DEVICES is set, select a device from the variable.
    Otherwise, get a free GPU device and use it.

    Returns:
        assigned GPU id.
    """
    cvd = os.environ.get('CUDA_VISIBLE_DEVICES')
    if cvd is None:
        # no GPUs are researved
        cvd = get_free_gpus()[0]
    elif ',' in cvd:
        # multiple GPUs are researved
        cvd = int(cvd.split(',')[0])
    else:
        # single GPU is reserved
        cvd = int(cvd)
    # Use the GPU immediately
    chainer.cuda.get_device_from_id(cvd).use()
    cupy.empty((1,), dtype=cupy.float32)
    return cvd 
開發者ID:hitachi-speech,項目名稱:EEND,代碼行數:25,代碼來源:utils.py

示例2: convolve2d

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def convolve2d(in1, in2, mode='full'):
    """
        note only support H * W * N * 1 convolve 2d
    """
    in1 = in1.transpose(2, 3, 0, 1) # to N * C * H * W
    in2 = in2.transpose(2, 3, 0, 1)
    out_c, _, kh, kw = in2.shape
    n, _, h, w = in1.shape

    if mode == 'full':
        ph, pw = kh-1, kw-1
        out_h, out_w = h-kh+1+ph*2, w-kw+1+pw*2# TODO
    elif mode == 'valid':
        ph, pw = 0, 0
        out_h, out_w = h-kh+1, w-kw+1 # TODO
    else:
        raise NotImplementedError

    y = cp.empty((n, out_c, out_h, out_w), dtype=in1.dtype)

    col = im2col_gpu(in1, kh, kw, 1, 1, ph, pw)
    y = cp.tensordot(
            col, in2, ((1, 2, 3), (1, 2, 3))).astype(in1.dtype, copy=False)
    y = cp.rollaxis(y, 3, 1)
    return y.transpose(2, 3, 0, 1) 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:27,代碼來源:cuda_tools.py

示例3: diagonal

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def diagonal(self, k=0):
        """Returns the k-th diagonal of the matrix.

        Args:
            k (int, optional): Which diagonal to get, corresponding to elements
            a[i, i+k]. Default: 0 (the main diagonal).

        Returns:
            cupy.ndarray : The k-th diagonal.
        """
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            return cupy.empty(0, dtype=self.data.dtype)
        idx, = cupy.nonzero(self.offsets == k)
        first_col, last_col = max(0, k), min(rows + k, cols)
        if idx.size == 0:
            return cupy.zeros(last_col - first_col, dtype=self.data.dtype)
        return self.data[idx[0], first_col:last_col] 
開發者ID:cupy,項目名稱:cupy,代碼行數:20,代碼來源:dia.py

示例4: _label

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def _label(x, structure, y):
    elems = numpy.where(structure != 0)
    vecs = [elems[dm] - 1 for dm in range(x.ndim)]
    offset = vecs[0]
    for dm in range(1, x.ndim):
        offset = offset * 3 + vecs[dm]
    indxs = numpy.where(offset < 0)[0]
    dirs = [[vecs[dm][dr] for dm in range(x.ndim)] for dr in indxs]
    dirs = cupy.array(dirs, dtype=numpy.int32)
    ndirs = indxs.shape[0]
    y_shape = cupy.array(y.shape, dtype=numpy.int32)
    count = cupy.zeros(2, dtype=numpy.int32)
    _kernel_init()(x, y)
    _kernel_connect()(y_shape, dirs, ndirs, x.ndim, y, size=y.size)
    _kernel_count()(y, count, size=y.size)
    maxlabel = int(count[0])
    labels = cupy.empty(maxlabel, dtype=numpy.int32)
    _kernel_labels()(y, count, labels, size=y.size)
    _kernel_finalize()(maxlabel, cupy.sort(labels), y, size=y.size)
    return maxlabel 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:measurements.py

示例5: test_cub_argmin

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def test_cub_argmin(self, xp, dtype):
        assert cupy.cuda.cub_enabled
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order == 'C':
            a = xp.ascontiguousarray(a)
        else:
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.argmin()

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        func = 'cupy.core._routines_statistics.cub.device_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.argmin()
        # ...then perform the actual computation
        return a.argmin() 
開發者ID:cupy,項目名稱:cupy,代碼行數:20,代碼來源:test_search.py

示例6: test_cub_sum

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def test_cub_sum(self, xp, dtype, axis):
        assert cupy.cuda.cub_enabled
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.sum(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if len(axis) == len(self.shape):
            func = 'cupy.core._routines_math.cub.device_reduce'
        else:
            func = 'cupy.core._routines_math.cub.device_segmented_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.sum(axis=axis)
        # ...then perform the actual computation
        return a.sum(axis=axis) 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:test_sumprod.py

示例7: test_cub_prod

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def test_cub_prod(self, xp, dtype, axis):
        assert cupy.cuda.cub_enabled
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.prod(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if len(axis) == len(self.shape):
            func = 'cupy.core._routines_math.cub.device_reduce'
        else:
            func = 'cupy.core._routines_math.cub.device_segmented_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.prod(axis=axis)
        # ...then perform the actual computation
        return a.prod(axis=axis)

    # TODO(leofang): test axis after support is added
    # don't test float16 as it's not as accurate? 
開發者ID:cupy,項目名稱:cupy,代碼行數:26,代碼來源:test_sumprod.py

示例8: test_cub_cumsum

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def test_cub_cumsum(self, xp, dtype):
        assert cupy.cuda.cub_enabled
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.cumsum()

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        func = 'cupy.core._routines_math.cub.device_scan'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.cumsum()
        # ...then perform the actual computation
        return a.cumsum()

    # TODO(leofang): test axis after support is added
    # don't test float16 as it's not as accurate? 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:test_sumprod.py

示例9: test_cub_min

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def test_cub_min(self, xp, dtype, axis):
        assert cupy.cuda.cub_enabled
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.min(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if len(axis) == len(self.shape):
            func = 'cupy.core._routines_statistics.cub.device_reduce'
        else:
            func = 'cupy.core._routines_statistics.cub.device_segmented_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.min(axis=axis)
        # ...then perform the actual computation
        return a.min(axis=axis) 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:test_ndarray_reduction.py

示例10: test_cub_max

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def test_cub_max(self, xp, dtype, axis):
        assert cupy.cuda.cub_enabled
        a = testing.shaped_random(self.shape, xp, dtype)
        if self.order in ('c', 'C'):
            a = xp.ascontiguousarray(a)
        elif self.order in ('f', 'F'):
            a = xp.asfortranarray(a)

        if xp is numpy:
            return a.max(axis=axis)

        # xp is cupy, first ensure we really use CUB
        ret = cupy.empty(())  # Cython checks return type, need to fool it
        if len(axis) == len(self.shape):
            func = 'cupy.core._routines_statistics.cub.device_reduce'
        else:
            func = 'cupy.core._routines_statistics.cub.device_segmented_reduce'
        with testing.AssertFunctionIsCalled(func, return_value=ret):
            a.max(axis=axis)
        # ...then perform the actual computation
        return a.max(axis=axis) 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:test_ndarray_reduction.py

示例11: tri

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def tri(N, M=None, k=0, dtype=float):
    """Creates an array with ones at and below the given diagonal.

    Args:
        N (int): Number of rows.
        M (int): Number of columns. M == N by default.
        k (int): The sub-diagonal at and below which the array is filled. Zero
            is the main diagonal, a positive value is above it, and a negative
            value is below.
        dtype: Data type specifier.

    Returns:
        cupy.ndarray: An array with ones at and below the given diagonal.

    .. seealso:: :func:`numpy.tri`

    """
    if M is None:
        M = N
    out = cupy.empty((N, M), dtype=dtype)

    return _tri_kernel(M, k, out) 
開發者ID:cupy,項目名稱:cupy,代碼行數:24,代碼來源:matrix.py

示例12: empty

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def empty(shape, dtype=float, order='C'):
    """Returns an array without initializing the elements.

    Args:
        shape (int or tuple of ints): Dimensionalities of the array.
        dtype: Data type specifier.
        order ({'C', 'F'}): Row-major (C-style) or column-major
            (Fortran-style) order.

    Returns:
        cupy.ndarray: A new array with elements not initialized.

    .. seealso:: :func:`numpy.empty`

    """
    return cupy.ndarray(shape, dtype, order=order) 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:basic.py

示例13: csr2coo

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def csr2coo(x, data, indices):
    """Converts a CSR-matrix to COO format.

    Args:
        x (cupyx.scipy.sparse.csr_matrix): A matrix to be converted.
        data (cupy.ndarray): A data array for converted data.
        indices (cupy.ndarray): An index array for converted data.

    Returns:
        cupyx.scipy.sparse.coo_matrix: A converted matrix.

    """
    if not check_availability('csr2coo'):
        raise RuntimeError('csr2coo is not available.')

    handle = device.get_cusparse_handle()
    m = x.shape[0]
    nnz = len(x.data)
    row = cupy.empty(nnz, 'i')
    cusparse.xcsr2coo(
        handle, x.indptr.data.ptr, nnz, m, row.data.ptr,
        cusparse.CUSPARSE_INDEX_BASE_ZERO)
    # data and indices did not need to be copied already
    return cupyx.scipy.sparse.coo_matrix(
        (data, (row, indices)), shape=x.shape) 
開發者ID:cupy,項目名稱:cupy,代碼行數:27,代碼來源:cusparse.py

示例14: col2im_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def col2im_gpu(col, sy, sx, ph, pw, h, w, dy=1, dx=1):
    n, c, kh, kw, out_h, out_w = col.shape
    img = cp.empty((n, c, h, w), dtype=col.dtype)
    cp.ElementwiseKernel(
        'raw T col, int32 h, int32 w, int32 out_h, int32 out_w,'
        'int32 kh, int32 kw, int32 sy, int32 sx, int32 ph, int32 pw,'
        'int32 dx, int32 dy',
        'T img',
        '''
           int c0 = i / (h * w);
           int y  = i / w % h;
           int x  = i % w;
           T val = 0;
           for (int ky = 0; ky < kh; ++ky) {
             int out_y = (y + ph - ky * dy);
             if (0 > out_y || out_y >= out_h * sy) continue;
             if (out_y % sy != 0) continue;
             out_y /= sy;
             for (int kx = 0; kx < kw; ++kx) {
               int out_x = (x + pw - kx * dx);
               if (0 > out_x || out_x >= out_w * sx) continue;
               if (out_x % sx != 0) continue;
               out_x /= sx;
               int k = out_y + out_h * (kx + kw * (ky + kh * c0));
               val = val + col[out_x + out_w * k];
             }
           }
           img = val;
        ''',
        'col2im')(col.reduced_view(),
                  h, w, out_h, out_w, kh, kw, sy, sx, ph, pw, dx, dy, img)
    return img 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:34,代碼來源:cuda_tools.py

示例15: _compressed_sparse_stack

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import empty [as 別名]
def _compressed_sparse_stack(blocks, axis):
    """Fast path for stacking CSR/CSC matrices
    (i) vstack for CSR, (ii) hstack for CSC.
    """
    other_axis = 1 if axis == 0 else 0
    data = cupy.concatenate([b.data for b in blocks])
    constant_dim = blocks[0].shape[other_axis]
    idx_dtype = sputils.get_index_dtype(arrays=[b.indptr for b in blocks],
                                        maxval=max(data.size, constant_dim))
    indices = cupy.empty(data.size, dtype=idx_dtype)
    indptr = cupy.empty(sum(b.shape[axis]
                            for b in blocks) + 1, dtype=idx_dtype)
    last_indptr = idx_dtype(0)
    sum_dim = 0
    sum_indices = 0
    for b in blocks:
        if b.shape[other_axis] != constant_dim:
            raise ValueError(
                'incompatible dimensions for axis %d' % other_axis)
        indices[sum_indices:sum_indices+b.indices.size] = b.indices
        sum_indices += b.indices.size
        idxs = slice(sum_dim, sum_dim + b.shape[axis])
        indptr[idxs] = b.indptr[:-1]
        indptr[idxs] += last_indptr
        sum_dim += b.shape[axis]
        last_indptr += b.indptr[-1]
    indptr[-1] = last_indptr
    if axis == 0:
        return csr.csr_matrix((data, indices, indptr),
                              shape=(sum_dim, constant_dim))
    else:
        return csc.csc_matrix((data, indices, indptr),
                              shape=(constant_dim, sum_dim)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:35,代碼來源:construct.py


注:本文中的cupy.empty方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。