本文整理匯總了Python中cupy.cuda.function.Module方法的典型用法代碼示例。如果您正苦於以下問題:Python function.Module方法的具體用法?Python function.Module怎麽用?Python function.Module使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cupy.cuda.function
的用法示例。
在下文中一共展示了function.Module方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_sru_mod
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def load_sru_mod():
global SRU_FWD_FUNC, SRU_BWD_FUNC, SRU_BiFWD_FUNC, SRU_BiBWD_FUNC
global SRU_STREAM
if check_sru_requirement():
from cupy.cuda import function
from pynvrtc.compiler import Program
# This sets up device to use.
device = torch.device("cuda")
tmp_ = torch.rand(1, 1).to(device)
sru_prog = Program(SRU_CODE.encode('utf-8'),
'sru_prog.cu'.encode('utf-8'))
sru_ptx = sru_prog.compile()
sru_mod = function.Module()
sru_mod.load(bytes(sru_ptx.encode()))
SRU_FWD_FUNC = sru_mod.get_function('sru_fwd')
SRU_BWD_FUNC = sru_mod.get_function('sru_bwd')
SRU_BiFWD_FUNC = sru_mod.get_function('sru_bi_fwd')
SRU_BiBWD_FUNC = sru_mod.get_function('sru_bi_bwd')
stream = namedtuple('Stream', ['ptr'])
SRU_STREAM = stream(ptr=torch.cuda.current_stream().cuda_stream)
示例2: compile
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def compile(self):
if self.ptx is None:
program = Program(kernel, 'relu.cu')
GPUReLUF.ptx = program.compile()
if torch.cuda.current_device() not in GPUReLUF.configured_gpus:
m = function.Module()
m.load(bytes(self.ptx))
self.relu_forward = m.get_function('relu_forward')
self.relu_backward = m.get_function('relu_backward')
Stream = namedtuple('Stream', ['ptr'])
self.stream = Stream(ptr=torch.cuda.current_stream().cuda_stream)
GPUReLUF.configured_gpus[torch.cuda.current_device()] = (self.relu_forward, self.relu_backward, self.stream)
self.relu_forward, self.relu_backward, self.stream = GPUReLUF.configured_gpus[torch.cuda.current_device()]
示例3: compile_functions
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def compile_functions(self):
device = torch.cuda.current_device()
print ("RRNN loaded for gpu {}".format(device))
mod = function.Module()
mod.load(bytes(self._RRNN_PTX.encode()))
if self.semiring.type == 0:
fwd_func = mod.get_function("rrnn_fwd")
bwd_func = mod.get_function("rrnn_bwd")
Stream = namedtuple("Stream", ["ptr"])
current_stream = Stream(ptr=torch.cuda.current_stream().cuda_stream)
self._DEVICE2FUNC[device] = (
current_stream, fwd_func, bwd_func,
)
return current_stream, fwd_func, bwd_func
else:
fwd_func = mod.get_function("rrnn_semiring_fwd")
bwd_func = mod.get_function("rrnn_semiring_bwd")
Stream = namedtuple("Stream", ["ptr"])
current_stream = Stream(ptr=torch.cuda.current_stream().cuda_stream)
self._DEVICE2FUNC[device] = (
current_stream, fwd_func, bwd_func
)
return current_stream, fwd_func, bwd_func
示例4: compile
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def compile(self):
if self.ptx is None:
program = Program(kernel.encode(), 'recurrent_forget_mult.cu'.encode())
GPUForgetMult.ptx = program.compile()
if torch.cuda.current_device() not in GPUForgetMult.configured_gpus:
m = function.Module()
m.load(bytes(self.ptx.encode()))
self.forget_mult = m.get_function('recurrent_forget_mult')
self.bwd_forget_mult = m.get_function('bwd_recurrent_forget_mult')
Stream = namedtuple('Stream', ['ptr'])
self.stream = Stream(ptr=torch.cuda.current_stream().cuda_stream)
GPUForgetMult.configured_gpus[torch.cuda.current_device()] = (self.forget_mult, self.bwd_forget_mult, self.stream)
self.forget_mult, self.bwd_forget_mult, self.stream = GPUForgetMult.configured_gpus[torch.cuda.current_device()]
示例5: compile
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def compile(self):
if self.ptx is None:
program = Program(kernel.encode(),
'recurrent_forget_mult.cu'.encode())
GPUForgetMult.ptx = program.compile()
if torch.cuda.current_device() not in GPUForgetMult.configured_gpus:
m = function.Module()
m.load(bytes(self.ptx.encode()))
self.forget_mult = m.get_function('recurrent_forget_mult')
self.bwd_forget_mult = m.get_function('bwd_recurrent_forget_mult')
Stream = namedtuple('Stream', ['ptr'])
self.stream = Stream(ptr=torch.cuda.current_stream().cuda_stream)
GPUForgetMult.configured_gpus[torch.cuda.current_device()] = (
self.forget_mult, self.bwd_forget_mult, self.stream)
self.forget_mult, self.bwd_forget_mult, self.stream = (
GPUForgetMult.configured_gpus[torch.cuda.current_device()])
示例6: compile
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def compile(self):
# Create program
program = Program(self.kernel, self.title)
# Compile program
arch = "-arch={0}".format(cupyKernel.get_compute_arch())
ptx = program.compile([arch])
# Load Program
m = function.Module()
m.load(bytes(ptx.encode()))
# Get Function Pointer
self.func = m.get_function(self.func_name)
self.compiled = True
示例7: __call__
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def __call__(self, input):
if not self.jit or not isinstance(input, torch.cuda.FloatTensor):
norm = input.norm(2, input.dim() - 1)
return torch.cat([norm, norm.new(norm.size()).zero_()], input.dim() - 1)
out = input.new(input.size())
input = input.contiguous()
if not iscomplex(input):
raise TypeError('The input and outputs should be complex')
if (self.modulus_cache[input.get_device()] is None):
kernel = b"""
extern "C"
__global__ void abs_complex_value(const float * x, float2 * z, int n)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= n)
return;
z[i] = make_float2(normf(2, x + 2*i), 0);
}
"""
print('modulus.cu')
prog = Program(kernel, b'modulus.cu')
ptx = prog.compile(['-arch='+get_compute_arch(input)])
module = Module()
module.load(bytes(ptx.encode()))
self.modulus_cache[input.get_device()] = module
fabs = self.modulus_cache[input.get_device()].get_function('abs_complex_value')
fabs(grid=(self.GET_BLOCKS(int(out.nelement())//2), 1, 1),
block=(self.CUDA_NUM_THREADS, 1, 1),
args=[input.data_ptr(), out.data_ptr(), out.numel() // 2],
stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))
return out
示例8: smooth_local_affine
# 需要導入模塊: from cupy.cuda import function [as 別名]
# 或者: from cupy.cuda.function import Module [as 別名]
def smooth_local_affine(output_cpu, input_cpu, epsilon, patch, h, w, f_r, f_e):
# program = Program(src.encode('utf-8'), 'best_local_affine_kernel.cu'.encode('utf-8'))
# ptx = program.compile(['-I/usr/local/cuda/include'.encode('utf-8')])
program = Program(src, 'best_local_affine_kernel.cu')
ptx = program.compile(['-I/usr/local/cuda/include'])
m = function.Module()
m.load(bytes(ptx.encode()))
_reconstruction_best_kernel = m.get_function('reconstruction_best_kernel')
_bilateral_smooth_kernel = m.get_function('bilateral_smooth_kernel')
_best_local_affine_kernel = m.get_function('best_local_affine_kernel')
Stream = namedtuple('Stream', ['ptr'])
s = Stream(ptr=torch.cuda.current_stream().cuda_stream)
filter_radius = f_r
sigma1 = filter_radius / 3
sigma2 = f_e
radius = (patch - 1) / 2
filtered_best_output = torch.zeros(np.shape(input_cpu)).cuda()
affine_model = torch.zeros((h * w, 12)).cuda()
filtered_affine_model =torch.zeros((h * w, 12)).cuda()
input_ = torch.from_numpy(input_cpu).cuda()
output_ = torch.from_numpy(output_cpu).cuda()
_best_local_affine_kernel(
grid=(int((h * w) / 256 + 1), 1),
block=(256, 1, 1),
args=[output_.data_ptr(), input_.data_ptr(), affine_model.data_ptr(),
np.int32(h), np.int32(w), np.float32(epsilon), np.int32(radius)], stream=s
)
_bilateral_smooth_kernel(
grid=(int((h * w) / 256 + 1), 1),
block=(256, 1, 1),
args=[affine_model.data_ptr(), filtered_affine_model.data_ptr(), input_.data_ptr(), np.int32(h), np.int32(w), np.int32(f_r), np.float32(sigma1), np.float32(sigma2)], stream=s
)
_reconstruction_best_kernel(
grid=(int((h * w) / 256 + 1), 1),
block=(256, 1, 1),
args=[input_.data_ptr(), filtered_affine_model.data_ptr(), filtered_best_output.data_ptr(),
np.int32(h), np.int32(w)], stream=s
)
numpy_filtered_best_output = filtered_best_output.cpu().numpy()
return numpy_filtered_best_output