當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.asnumpy方法代碼示例

本文整理匯總了Python中cupy.asnumpy方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.asnumpy方法的具體用法?Python cupy.asnumpy怎麽用?Python cupy.asnumpy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.asnumpy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _non_maximum_suppression_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def _non_maximum_suppression_gpu(bbox, thresh, score=None, limit=None):
    if len(bbox) == 0:
        return cp.zeros((0,), dtype=np.int32)

    n_bbox = bbox.shape[0]

    if score is not None:
        order = score.argsort()[::-1].astype(np.int32)
    else:
        order = cp.arange(n_bbox, dtype=np.int32)

    sorted_bbox = bbox[order, :]
    selec, n_selec = _call_nms_kernel(
        sorted_bbox, thresh)
    selec = selec[:n_selec]
    selec = order[selec]
    if limit is not None:
        selec = selec[:limit]
    return cp.asnumpy(selec) 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:21,代碼來源:non_maximum_suppression.py

示例2: _suppress

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def _suppress(self, raw_cls_bbox, raw_prob):
        bbox = list()
        label = list()
        score = list()
        # skip cls_id = 0 because it is the background class
        for l in range(1, self.n_class):
            cls_bbox_l = raw_cls_bbox.reshape((-1, self.n_class, 4))[:, l, :]
            prob_l = raw_prob[:, l]
            mask = prob_l > self.score_thresh
            cls_bbox_l = cls_bbox_l[mask]
            prob_l = prob_l[mask]
            keep = non_maximum_suppression(
                cp.array(cls_bbox_l), self.nms_thresh, prob_l)
            keep = cp.asnumpy(keep)
            bbox.append(cls_bbox_l[keep])
            # The labels are in [0, self.n_class - 2].
            label.append((l - 1) * np.ones((len(keep),)))
            score.append(prob_l[keep])
        bbox = np.concatenate(bbox, axis=0).astype(np.float32)
        label = np.concatenate(label, axis=0).astype(np.int32)
        score = np.concatenate(score, axis=0).astype(np.float32)
        return bbox, label, score 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:24,代碼來源:faster_rcnn.py

示例3: test_lu_factor_reconstruction

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def test_lu_factor_reconstruction(self, dtype):
        m, n = self.shape
        A = cupy.random.randn(m, n, dtype=dtype)
        lu, piv = cupyx.scipy.linalg.lu_factor(A)
        # extract ``L`` and ``U`` from ``lu``
        L = cupy.tril(lu, k=-1)
        cupy.fill_diagonal(L, 1.)
        L = L[:, :m]
        U = cupy.triu(lu)
        U = U[:n, :]
        # check output shapes
        assert lu.shape == (m, n)
        assert L.shape == (m, min(m, n))
        assert U.shape == (min(m, n), n)
        assert piv.shape == (min(m, n),)
        # apply pivot (on CPU since slaswp is not available in cupy)
        piv = cupy.asnumpy(piv)
        rows = numpy.arange(m)
        for i, row in enumerate(piv):
            if i != row:
                rows[i], rows[row] = rows[row], rows[i]
        PA = A[rows]
        # check that reconstruction is close to original
        LU = L.dot(U)
        cupy.testing.assert_allclose(LU, PA, atol=1e-5) 
開發者ID:cupy,項目名稱:cupy,代碼行數:27,代碼來源:test_decomp_lu.py

示例4: assert_allclose

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='',
                    verbose=True):
    """Raises an AssertionError if objects are not equal up to desired tolerance.

    Args:
         actual(numpy.ndarray or cupy.ndarray): The actual object to check.
         desired(numpy.ndarray or cupy.ndarray): The desired, expected object.
         rtol(float): Relative tolerance.
         atol(float): Absolute tolerance.
         err_msg(str): The error message to be printed in case of failure.
         verbose(bool): If ``True``, the conflicting
             values are appended to the error message.

    .. seealso:: :func:`numpy.testing.assert_allclose`

    """  # NOQA
    numpy.testing.assert_allclose(
        cupy.asnumpy(actual), cupy.asnumpy(desired),
        rtol=rtol, atol=atol, err_msg=err_msg, verbose=verbose) 
開發者ID:cupy,項目名稱:cupy,代碼行數:21,代碼來源:array.py

示例5: assert_array_almost_equal

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
    """Raises an AssertionError if objects are not equal up to desired precision.

    Args:
         x(numpy.ndarray or cupy.ndarray): The actual object to check.
         y(numpy.ndarray or cupy.ndarray): The desired, expected object.
         decimal(int): Desired precision.
         err_msg(str): The error message to be printed in case of failure.
         verbose(bool): If ``True``, the conflicting
             values are appended to the error message.

    .. seealso:: :func:`numpy.testing.assert_array_almost_equal`
    """  # NOQA
    numpy.testing.assert_array_almost_equal(
        cupy.asnumpy(x), cupy.asnumpy(y), decimal=decimal,
        err_msg=err_msg, verbose=verbose) 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:array.py

示例6: array_repr

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
    """Returns the string representation of an array.

    Args:
        arr (array_like): Input array. It should be able to feed to
            :func:`cupy.asnumpy`.
        max_line_width (int): The maximum number of line lengths.
        precision (int): Floating point precision. It uses the current printing
            precision of NumPy.
        suppress_small (bool): If ``True``, very small numbers are printed as
            zeros

    Returns:
        str: The string representation of ``arr``.

    .. seealso:: :func:`numpy.array_repr`

    """
    return numpy.array_repr(cupy.asnumpy(arr), max_line_width, precision,
                            suppress_small) 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:formatting.py

示例7: savez

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def savez(file, *args, **kwds):
    """Saves one or more arrays into a file in uncompressed ``.npz`` format.

    Arguments without keys are treated as arguments with automatic keys named
    ``arr_0``, ``arr_1``, etc. corresponding to the positions in the argument
    list. The keys of arguments are used as keys in the ``.npz`` file, which
    are used for accessing NpzFile object when the file is read by
    :func:`cupy.load` function.

    Args:
        file (file or str): File or filename to save.
        *args: Arrays with implicit keys.
        **kwds: Arrays with explicit keys.

    .. seealso:: :func:`numpy.savez`

    """
    args = map(cupy.asnumpy, args)
    for key in kwds:
        kwds[key] = cupy.asnumpy(kwds[key])
    numpy.savez(file, *args, **kwds) 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:npz.py

示例8: get_percentiles

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def get_percentiles(data, sigma):

    """Compute percentiles for data and return an array with the same length
    as the number of elements in ``sigma``.

    Args:
        data (array): 1-dimensional NumPy or CuPy arryay.
        sigma (tuple): Sigmas for which percentiles are computed.

    Returns:
        array: Array of percentiles.
    """

    def _get_percentiles(_data, _sigma):
        try:
            return np.percentile(_data, _sigma)
        except IndexError:  # Handle uninitialized model parameters
            return np.array((float('NaN'),) * 7)

    if isinstance(data, cupy.ndarray):
        # TODO(hvy): Make percentile computation faster for GPUs
        data = cupy.asnumpy(data)
        return cupy.asarray(_get_percentiles(data, sigma))

    return _get_percentiles(data, sigma) 
開發者ID:leokarlin,項目名稱:LaSO,代碼行數:27,代碼來源:monitor.py

示例9: _percentiles

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def _percentiles(x, sigmas):

    """Compute percentiles for the given array.

    Args:
        x (array): Target array for which percentiles are computed.
        sigmas (iterable): Percentile sigma values.

    Returns:
        array: List of percentiles. The list has the same length as the given
            ``sigma``.
    """

    def _percentiles_cpu(_x):
        try:
            return numpy.percentile(_x, sigmas)
        except IndexError:
            return numpy.array((float('NaN'),) * 7)

    # TODO(hvy): Make percentile computation faster for GPUs
    if isinstance(x, cupy.ndarray):
        x = cupy.asnumpy(x)
        return cupy.asarray(_percentiles_cpu(x))
    return _percentiles_cpu(x) 
開發者ID:rampage644,項目名稱:wavenet,代碼行數:26,代碼來源:parameter_statistics.py

示例10: as_numpy

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def as_numpy(x):
    """Convert to `numpy.ndarray`.

    Args:
        x (`numpy.ndarray` or `cupy.ndarray`): Arbitrary object that can be
            converted to `numpy.ndarray`.
    Returns:
        `numpy.ndarray`: Converted array.
    """
    if isinstance(x, Variable):
        x = x.data

    if np.isscalar(x):
        return np.array(x)
    elif isinstance(x, np.ndarray):
        return x
    return cp.asnumpy(x) 
開發者ID:oreilly-japan,項目名稱:deep-learning-from-scratch-3,代碼行數:19,代碼來源:cuda.py

示例11: preview_convert

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def preview_convert(iterator_a, iterator_b, g_a, g_b, device, gla, dst):
    @chainer.training.make_extension()
    def make_preview(trainer):
        with chainer.using_config('train', False):
            with chainer.no_backprop_mode():
                x_a = iterator_a.next()
                x_a = convert.concat_examples(x_a, device)
                x_a = chainer.Variable(x_a)

                x_b = iterator_b.next()
                x_b = convert.concat_examples(x_b, device)
                x_b = chainer.Variable(x_b)

                x_ab = g_a(x_a)
                x_ba = g_b(x_b)

                x_bab = g_a(x_ba)
                x_aba = g_b(x_ab)

                preview_dir = '{}/preview'.format(dst)
                if not os.path.exists(preview_dir):
                    os.makedirs(preview_dir)
                image_dir = '{}/image'.format(dst)
                if not os.path.exists(image_dir):
                    os.makedirs(image_dir)

                names = ['a', 'ab', 'aba', 'b', 'ba', 'bab']
                images = [x_a, x_ab, x_aba, x_b, x_ba, x_bab]
                for n, i in zip(names, images):
                    i = cp.asnumpy(i.data)[:,:,padding:-padding,:].reshape(1, -1, 128)
                    image.save(image_dir+'/{}{}.jpg'.format(trainer.updater.epoch,n), i)
                    w = np.concatenate([gla.inverse(_i) for _i in dataset.reverse(i)])
                    dataset.save(preview_dir+'/{}{}.wav'.format(trainer.updater.epoch,n), 16000, w)

    return make_preview 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:37,代碼來源:trainer.py

示例12: inverse

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def inverse(self, spectrum, in_phase=None):
        if in_phase is None:
            in_phase = self.phase
        else:
            in_phase = cp.array(in_phase)
        spectrum = cp.array(spectrum)
        self.spectrum_buffer[:, -1] = spectrum * in_phase
        self.absolute_buffer[:, -1] = spectrum

        for _ in range(self.loop_num):
            self.overwrap_buf *= 0
            waves = cp.fft.ifft(self.spectrum_buffer, axis=2).real
            last = self.spectrum_buffer

            for i in range(self.buffer_size):
                self.overwrap_buf[:,i*self.wave_dif:i*self.wave_dif+self.wave_len] += waves[:,i]
            waves = cp.stack([self.overwrap_buf[:, i*self.wave_dif:i*self.wave_dif+self.wave_len]*self.window for i in range(self.buffer_size)], axis=1)

            spectrum = cp.fft.fft(waves, axis=2)
            self.spectrum_buffer = self.absolute_buffer * spectrum / (cp.abs(spectrum)+1e-10)
            self.spectrum_buffer += 0.5 * (self.spectrum_buffer - last)

        dst = cp.asnumpy(self.spectrum_buffer[:, 0])
        self.absolute_buffer = cp.roll(self.absolute_buffer, -1, axis=1)
        self.spectrum_buffer = cp.roll(self.spectrum_buffer, -1, axis=1)

        return dst 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:29,代碼來源:gla_gpu.py

示例13: serialize

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def serialize(self, serializer):
        self.best_loss = serializer("best_loss", self.best_loss)
        # Make sure that best_loss is at the right location.
        # After deserialization, the best_loss is
        # instanciated on the CPU instead of the GPU.
        if self.use_chainerx:
            if self.gpu is None:
                if self.best_loss is not None and not isinstance(self.best_loss, chainerx.ndarray):
                    self.best_loss = chainerx.array(self.best_loss)
            else:
                if self.best_loss is not None:
                    if isinstance(self.best_loss, chainerx.ndarray):
                        self.best_loss = chainerx.array(self.best_loss, device="cuda:%i"%self.gpu)
                    else:
                        self.best_loss = chainerx.array(self.best_loss, device="cuda:%i"%self.gpu)


            #if self.gpu is not None and self.best_loss is not None:
        else:
            if self.gpu is None:
                pass  # best_loss should be on the cpu memory anyway
    #             if isinstance(self.best_loss, cupy.core.ndarray):
    #                 self.best_loss = cupy.asnumpy(self.best_loss)
            else:
                import cupy
                if self.best_loss is not None and (isinstance(self.best_loss, numpy.ndarray) or self.best_loss.device.id != self.gpu):
                    with cupy.cuda.Device(self.gpu):
                        self.best_loss = cupy.array(self.best_loss) 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:30,代碼來源:training_chainer.py

示例14: to_cpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def to_cpu(obj):
            return np.asnumpy(obj) 
開發者ID:Kashu7100,項目名稱:Qualia2.0,代碼行數:4,代碼來源:core.py

示例15: asnumpy

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asnumpy [as 別名]
def asnumpy(x):
    if cupy is not None:
        return cupy.asnumpy(x)
    else:
        return numpy.asarray(x) 
開發者ID:artetxem,項目名稱:vecmap,代碼行數:7,代碼來源:cupy_utils.py


注:本文中的cupy.asnumpy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。