當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.asarray方法代碼示例

本文整理匯總了Python中cupy.asarray方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.asarray方法的具體用法?Python cupy.asarray怎麽用?Python cupy.asarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.asarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_interp_fourier

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def _get_interp_fourier(self, sz):
        """
            compute the fourier series of the interpolation function.
        """
        f1 = np.arange(-(sz[0]-1) / 2, (sz[0]-1)/2+1, dtype=np.float32)[:, np.newaxis] / sz[0]
        interp1_fs = np.real(cubic_spline_fourier(f1, config.interp_bicubic_a) / sz[0])
        f2 = np.arange(-(sz[1]-1) / 2, (sz[1]-1)/2+1, dtype=np.float32)[np.newaxis, :] / sz[1]
        interp2_fs = np.real(cubic_spline_fourier(f2, config.interp_bicubic_a) / sz[1])
        if config.interp_centering:
            f1 = np.arange(-(sz[0]-1) / 2, (sz[0]-1)/2+1, dtype=np.float32)[:, np.newaxis]
            interp1_fs = interp1_fs * np.exp(-1j*np.pi / sz[0] * f1)
            f2 = np.arange(-(sz[1]-1) / 2, (sz[1]-1)/2+1, dtype=np.float32)[np.newaxis, :]
            interp2_fs = interp2_fs * np.exp(-1j*np.pi / sz[1] * f2)

        if config.interp_windowing:
            win1 = np.hanning(sz[0]+2)[:, np.newaxis]
            win2 = np.hanning(sz[1]+2)[np.newaxis, :]
            interp1_fs = interp1_fs * win1[1:-1]
            interp2_fs = interp2_fs * win2[1:-1]
        if not config.use_gpu:
            return (interp1_fs[:, :, np.newaxis, np.newaxis],
                    interp2_fs[:, :, np.newaxis, np.newaxis])
        else:
            return (cp.asarray(interp1_fs[:, :, np.newaxis, np.newaxis]),
                    cp.asarray(interp2_fs[:, :, np.newaxis, np.newaxis])) 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:27,代碼來源:tracker.py

示例2: __ua_convert__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def __ua_convert__(dispatchables, coerce):
    if coerce:
        try:
            replaced = [
                cupy.asarray(d.value) if d.coercible and d.type is np.ndarray
                else d.value for d in dispatchables]
        except TypeError:
            return NotImplemented
    else:
        replaced = [d.value for d in dispatchables]

    if not all(d.type is not np.ndarray or isinstance(r, cupy.ndarray)
               for r, d in zip(replaced, dispatchables)):
        return NotImplemented

    return replaced 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:fft.py

示例3: run

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def run(gpuid, n_clusters, num, max_iter, use_custom_kernel, output):
    samples = numpy.random.randn(num, 2)
    X_train = numpy.r_[samples + 1, samples - 1]

    with timer(' CPU '):
        centers, pred = fit_xp(X_train, n_clusters, max_iter)

    with cupy.cuda.Device(gpuid):
        X_train = cupy.asarray(X_train)

        with timer(' GPU '):
            if use_custom_kernel:
                centers, pred = fit_custom(X_train, n_clusters, max_iter)
            else:
                centers, pred = fit_xp(X_train, n_clusters, max_iter)

        if output is not None:
            index = numpy.random.choice(10000000, 300, replace=False)
            draw(X_train[index].get(), n_clusters, centers.get(),
                 pred[index].get(), output) 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:kmeans.py

示例4: test_array_function

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def test_array_function(self):
        a = numpy.random.randn(100, 100)
        a_cpu = numpy.asarray(a)
        a_gpu = cupy.asarray(a)

        # The numpy call for both CPU and GPU arrays is intentional to test the
        # __array_function__ protocol
        qr_cpu = numpy.linalg.qr(a_cpu)
        qr_gpu = numpy.linalg.qr(a_gpu)

        if isinstance(qr_cpu, tuple):
            for b_cpu, b_gpu in zip(qr_cpu, qr_gpu):
                self.assertEqual(b_cpu.dtype, b_gpu.dtype)
                cupy.testing.assert_allclose(b_cpu, b_gpu, atol=1e-4)
        else:
            self.assertEqual(qr_cpu.dtype, qr_gpu.dtype)
            cupy.testing.assert_allclose(qr_cpu, qr_gpu, atol=1e-4) 
開發者ID:cupy,項目名稱:cupy,代碼行數:19,代碼來源:test_array_function.py

示例5: test_reshape_contiguity

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def test_reshape_contiguity(self):
        shape_init, shape_final = self.shape_in_out

        a_cupy = testing.shaped_arange(shape_init, xp=cupy)
        a_cupy = cupy.asarray(a_cupy, order=self.order_init)
        b_cupy = a_cupy.reshape(shape_final, order=self.order_reshape)

        a_numpy = testing.shaped_arange(shape_init, xp=numpy)
        a_numpy = numpy.asarray(a_numpy, order=self.order_init)
        b_numpy = a_numpy.reshape(shape_final, order=self.order_reshape)

        assert b_cupy.flags.f_contiguous == b_numpy.flags.f_contiguous
        assert b_cupy.flags.c_contiguous == b_numpy.flags.c_contiguous

        testing.assert_array_equal(b_cupy.strides, b_numpy.strides)
        testing.assert_array_equal(b_cupy, b_numpy) 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:test_shape.py

示例6: unwrap

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def unwrap(p, discont=numpy.pi, axis=-1):
    """Unwrap by changing deltas between values to 2*pi complement.

    Args:
        p (cupy.ndarray): Input array.
        discont (float): Maximum discontinuity between values, default is
            ``pi``.
        axis (int): Axis along which unwrap will operate, default is the last
            axis.
    Returns:
        cupy.ndarray: The result array.

    .. seealso:: :func:`numpy.unwrap`
    """

    p = cupy.asarray(p)
    nd = p.ndim
    dd = sumprod.diff(p, axis=axis)
    slice1 = [slice(None, None)]*nd     # full slices
    slice1[axis] = slice(1, None)
    slice1 = tuple(slice1)
    ph_correct = _unwrap_correct(dd, discont)
    up = cupy.array(p, copy=True, dtype='d')
    up[slice1] = p[slice1] + cupy.cumsum(ph_correct, axis=axis)
    return up 
開發者ID:cupy,項目名稱:cupy,代碼行數:27,代碼來源:trigonometric.py

示例7: fftshift

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def fftshift(x, axes=None):
    """Shift the zero-frequency component to the center of the spectrum.

    Args:
        x (cupy.ndarray): Input array.
        axes (int or tuple of ints): Axes over which to shift. Default is
            ``None``, which shifts all axes.

    Returns:
        cupy.ndarray: The shifted array.

    .. seealso:: :func:`numpy.fft.fftshift`
    """
    x = cupy.asarray(x)
    if axes is None:
        axes = list(range(x.ndim))
    elif isinstance(axes, np.compat.integer_types):
        axes = (axes,)
    for axis in axes:
        x = cupy.roll(x, x.shape[axis] // 2, axis)
    return x 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:fft.py

示例8: ifftshift

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def ifftshift(x, axes=None):
    """The inverse of :meth:`fftshift`.

    Args:
        x (cupy.ndarray): Input array.
        axes (int or tuple of ints): Axes over which to shift. Default is
            ``None``, which shifts all axes.

    Returns:
        cupy.ndarray: The shifted array.

    .. seealso:: :func:`numpy.fft.ifftshift`
    """
    x = cupy.asarray(x)
    if axes is None:
        axes = list(range(x.ndim))
    elif isinstance(axes, np.compat.integer_types):
        axes = (axes,)
    for axis in axes:
        x = cupy.roll(x, -(x.shape[axis] // 2), axis)
    return x 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:fft.py

示例9: tril

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def tril(m, k=0):
    """Returns a lower triangle of an array.

    Args:
        m (array-like): Array or array-like object.
        k (int): The diagonal above which to zero elements. Zero is the main
            diagonal, a positive value is above it, and a negative value is
            below.

    Returns:
        cupy.ndarray: A lower triangle of an array.

    .. seealso:: :func:`numpy.tril`

    """
    m = cupy.asarray(m)
    mask = tri(*m.shape[-2:], k=k, dtype=bool)

    return cupy.where(mask, m, m.dtype.type(0)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:21,代碼來源:matrix.py

示例10: dirichlet

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def dirichlet(self, alpha, size=None, dtype=float):
        """Returns an array of samples drawn from the dirichlet distribution.

        .. seealso::
            :func:`cupy.random.dirichlet` for full documentation,
            :meth:`numpy.random.RandomState.dirichlet
            <numpy.random.mtrand.RandomState.dirichlet>`
        """
        alpha = cupy.asarray(alpha)
        if size is None:
            size = alpha.shape
        else:
            size += alpha.shape
        y = cupy.empty(shape=size, dtype=dtype)
        _kernels.standard_gamma_kernel(alpha, self._rk_seed, y)
        y /= y.sum(axis=-1, keepdims=True)
        self._update_seed(y.size)
        return y 
開發者ID:cupy,項目名稱:cupy,代碼行數:20,代碼來源:generator.py

示例11: exponential

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def exponential(self, scale=1.0, size=None, dtype=float):
        """Returns an array of samples drawn from a exponential distribution.

        .. warning::

            This function may synchronize the device.

        .. seealso::
            :func:`cupy.random.exponential` for full documentation,
            :meth:`numpy.random.RandomState.exponential
            <numpy.random.mtrand.RandomState.exponential>`
        """
        scale = cupy.asarray(scale, dtype)
        if (scale < 0).any():  # synchronize!
            raise ValueError('scale < 0')
        if size is None:
            size = scale.shape
        x = self.standard_exponential(size, dtype)
        x *= scale
        return x 
開發者ID:cupy,項目名稱:cupy,代碼行數:22,代碼來源:generator.py

示例12: gamma

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def gamma(self, shape, scale=1.0, size=None, dtype=float):
        """Returns an array of samples drawn from a gamma distribution.

        .. seealso::
            :func:`cupy.random.gamma` for full documentation,
            :meth:`numpy.random.RandomState.gamma
            <numpy.random.mtrand.RandomState.gamma>`
        """
        shape, scale = cupy.asarray(shape), cupy.asarray(scale)
        if size is None:
            size = cupy.broadcast(shape, scale).shape
        y = cupy.empty(shape=size, dtype=dtype)
        _kernels.standard_gamma_kernel(shape, self._rk_seed, y)
        y *= scale
        self._update_seed(y.size)
        return y 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:generator.py

示例13: hypergeometric

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def hypergeometric(self, ngood, nbad, nsample, size=None, dtype=int):
        """Returns an array of samples drawn from the hypergeometric distribution.

        .. seealso::
            :func:`cupy.random.hypergeometric` for full documentation,
            :meth:`numpy.random.RandomState.hypergeometric
            <numpy.random.mtrand.RandomState.hypergeometric>`
        """
        ngood, nbad, nsample = \
            cupy.asarray(ngood), cupy.asarray(nbad), cupy.asarray(nsample)
        if size is None:
            size = cupy.broadcast(ngood, nbad, nsample).shape
        y = cupy.empty(shape=size, dtype=dtype)
        _kernels.hypergeometric_kernel(ngood, nbad, nsample, self._rk_seed, y)
        self._update_seed(y.size)
        return y 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:generator.py

示例14: logistic

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def logistic(self, loc=0.0, scale=1.0, size=None, dtype=float):
        """Returns an array of samples drawn from the logistic distribution.

        .. seealso::
            :func:`cupy.random.logistic` for full documentation,
            :meth:`numpy.random.RandomState.logistic
            <numpy.random.mtrand.RandomState.logistic>`
        """
        loc, scale = cupy.asarray(loc), cupy.asarray(scale)
        if size is None:
            size = cupy.broadcast(loc, scale).shape
        x = cupy.empty(shape=size, dtype=dtype)
        _kernels.open_uniform_kernel(self._rk_seed, x)
        self._update_seed(x.size)
        x = (1.0 - x) / x
        cupy.log(x, out=x)
        cupy.multiply(x, scale, out=x)
        cupy.add(x, loc, out=x)
        return x 
開發者ID:cupy,項目名稱:cupy,代碼行數:21,代碼來源:generator.py

示例15: negative_binomial

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import asarray [as 別名]
def negative_binomial(self, n, p, size=None, dtype=int):
        """Returns an array of samples drawn from the negative binomial distribution.

        .. warning::

            This function may synchronize the device.

        .. seealso::
            :func:`cupy.random.negative_binomial` for full documentation,
            :meth:`numpy.random.RandomState.negative_binomial
            <numpy.random.mtrand.RandomState.negative_binomial>`
        """
        n = cupy.asarray(n)
        p = cupy.asarray(p)
        if cupy.any(n <= 0):  # synchronize!
            raise ValueError('n <= 0')
        if cupy.any(p < 0):  # synchronize!
            raise ValueError('p < 0')
        if cupy.any(p > 1):  # synchronize!
            raise ValueError('p > 1')
        y = self.gamma(n, (1-p)/p, size)
        return self.poisson(y, dtype=dtype) 
開發者ID:cupy,項目名稱:cupy,代碼行數:24,代碼來源:generator.py


注:本文中的cupy.asarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。