當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.array方法代碼示例

本文整理匯總了Python中cupy.array方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.array方法的具體用法?Python cupy.array怎麽用?Python cupy.array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def __init__(self, parallel, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
        self.wave_len = wave_len
        self.wave_dif = wave_dif
        self.buffer_size = buffer_size
        self.loop_num = loop_num
        self.parallel = parallel
        self.window = cp.array([window for _ in range(parallel)])

        self.wave_buf = cp.zeros((parallel, wave_len+wave_dif), dtype=float)
        self.overwrap_buf = cp.zeros((parallel, wave_dif*buffer_size+(wave_len-wave_dif)), dtype=float)
        self.spectrum_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
        self.absolute_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
        
        self.phase = cp.zeros((parallel, self.wave_len), dtype=complex)
        self.phase += cp.random.random((parallel, self.wave_len))-0.5 + cp.random.random((parallel, self.wave_len))*1j - 0.5j
        self.phase[self.phase == 0] = 1
        self.phase /= cp.abs(self.phase) 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:19,代碼來源:gla_gpu.py

示例2: do_eval

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def do_eval(args):   
    ced, charlist, chardict = load_encdec_from_config(args.config, args.model)
    
    if args.gpu is not None:
        chainer.cuda.Device(args.gpu).use()
        import cupy
        ced = ced.to_gpu(args.gpu)
        xp = cupy
    else:
        xp = np
    
    def enc(word):
        w_array=xp.array([chardict[c] for c in word], dtype=xp.int32)
        hx=ced.enc.compute_h((w_array,), train=False)
        return hx
    
    def dec(hx):
        decoded = ced.dec.decode(hx, length = 40, train = False)
        return "".join([charlist[int(idx)] for idx in decoded[0]])
    
    IPython.embed() 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:23,代碼來源:char_encdec.py

示例3: generate_voc_encodings

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def generate_voc_encodings(encoder, charlist, voc_list, mb_size=1024):
    dataset = encode_voc_list(voc_list, charlist)
    print "voc_size:", len(dataset)
    xp = encoder.xp
    
    encodings_list = []
    cursor = 0
    while cursor < len(dataset):
        batch = dataset[cursor:cursor+mb_size]
        if xp != np:
            batch = [xp.array(bb) for bb in batch]
        cursor += mb_size
        encodings = encoder.compute_h(batch, train = False, use_workaround = True)
        encodings_list.append(encodings.data.reshape(encodings.data.shape[1:]))
        print "processed", cursor
        
    result = np.vstack(encodings_list)
    return result 
開發者ID:fabiencro,項目名稱:knmt,代碼行數:20,代碼來源:char_encdec.py

示例4: to_cpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def to_cpu(array, stream=None):
    """Copies the given GPU array to host CPU.

    Args:
        array (*array*, None, list or tuple):
            Array or arrays to be sent to CPU.
        stream (cupy.cuda.Stream): CUDA stream.

    Returns:
        numpy.ndarray, list or tuple: Array on CPU.

        If some of the arrays are already on CPU, then this function just
        returns those arrays without performing any copy.

        If input arrays include `None`, it is returned as `None` as is.

    """
    return _backend._convert_arrays(
        array, lambda arr: _array_to_cpu(arr, stream)) 
開發者ID:chainer,項目名稱:chainer,代碼行數:21,代碼來源:cuda.py

示例5: get_array_module

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def get_array_module(*args):
    """Gets an appropriate one from :mod:`numpy` or :mod:`cupy`.

    This is almost equivalent to :func:`cupy.get_array_module`. The differences
    are that this function can be used even if CUDA is not available and that
    it will return their data arrays' array module for
    :class:`~chainer.Variable` arguments.

    .. deprecated:: v5.0.0

        This API is deprecated. Please use
        :func:`~chainer.backend.get_array_module` instead.

    Args:
        args: Values to determine whether NumPy or CuPy should be used.

    Returns:
        module: :mod:`cupy` or :mod:`numpy` is returned based on the types of
        the arguments.

    """
    return chainer.backend.get_array_module(*args) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:cuda.py

示例6: _suppress

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def _suppress(self, raw_cls_bbox, raw_prob):
        bbox = list()
        label = list()
        score = list()
        # skip cls_id = 0 because it is the background class
        for l in range(1, self.n_class):
            cls_bbox_l = raw_cls_bbox.reshape((-1, self.n_class, 4))[:, l, :]
            prob_l = raw_prob[:, l]
            mask = prob_l > self.score_thresh
            cls_bbox_l = cls_bbox_l[mask]
            prob_l = prob_l[mask]
            keep = non_maximum_suppression(
                cp.array(cls_bbox_l), self.nms_thresh, prob_l)
            keep = cp.asnumpy(keep)
            bbox.append(cls_bbox_l[keep])
            # The labels are in [0, self.n_class - 2].
            label.append((l - 1) * np.ones((len(keep),)))
            score.append(prob_l[keep])
        bbox = np.concatenate(bbox, axis=0).astype(np.float32)
        label = np.concatenate(label, axis=0).astype(np.int32)
        score = np.concatenate(score, axis=0).astype(np.float32)
        return bbox, label, score 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:24,代碼來源:faster_rcnn.py

示例7: __init__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def __init__(self, numpy_object, cupy_object, array=None):
        """
        _RecursiveAttr initializer.

        Args:
            numpy_object (method): NumPy method.
            cupy_method (method): Corresponding CuPy method.
            array (ndarray): Acts as flag to know if _RecursiveAttr object
                is called from ``ndarray`` class. Also, acts as container for
                modifying args in case it is called from ``ndarray``.
                None otherwise.
        """

        self._numpy_object = numpy_object
        self._cupy_object = cupy_object
        self._fallback_array = array 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:fallback.py

示例8: _update_cupy_array

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def _update_cupy_array(self):
        """
        Updates _cupy_array from _numpy_array.
        To be executed before calling cupy function.
        """
        base = self.base

        if base is None:
            if self._remember_numpy:
                if self._cupy_array is None:
                    self._cupy_array = cp.array(self._numpy_array)
                else:
                    self._cupy_array[:] = self._numpy_array
        else:
            if base._remember_numpy:
                base._update_cupy_array() 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:fallback.py

示例9: get

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def get(self, stream=None):
        """Returns a copy of the array on host memory.

        Args:
            stream (cupy.cuda.Stream): CUDA stream object. If it is given, the
                copy runs asynchronously. Otherwise, the copy is synchronous.

        Returns:
            scipy.sparse.dia_matrix: Copy of the array on host memory.

        """
        if not _scipy_available:
            raise RuntimeError('scipy is not available')
        data = self.data.get(stream)
        offsets = self.offsets.get(stream)
        return scipy.sparse.dia_matrix((data, offsets), shape=self._shape) 
開發者ID:cupy,項目名稱:cupy,代碼行數:18,代碼來源:dia.py

示例10: get

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def get(self, stream=None):
        """Returns a copy of the array on host memory.

        Args:
            stream (cupy.cuda.Stream): CUDA stream object. If it is given, the
                copy runs asynchronously. Otherwise, the copy is synchronous.

        Returns:
            scipy.sparse.coo_matrix: Copy of the array on host memory.

        """
        if not _scipy_available:
            raise RuntimeError('scipy is not available')

        data = self.data.get(stream)
        row = self.row.get(stream)
        col = self.col.get(stream)
        return scipy.sparse.coo_matrix(
            (data, (row, col)), shape=self.shape) 
開發者ID:cupy,項目名稱:cupy,代碼行數:21,代碼來源:coo.py

示例11: minimum_filter1d

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def minimum_filter1d(input, size, axis=-1, output=None, mode="reflect",
                     cval=0.0, origin=0):
    """Compute the minimum filter along a single axis.

    Args:
        input (cupy.ndarray): The input array.
        size (int): Length of the minimum filter.
        axis (int): The axis of input along which to calculate. Default is -1.
        output (cupy.ndarray, dtype or None): The array in which to place the
            output. Default is is same dtype as the input.
        mode (str): The array borders are handled according to the given mode
            (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
            ``'wrap'``). Default is ``'reflect'``.
        cval (scalar): Value to fill past edges of input if mode is
            ``'constant'``. Default is ``0.0``.
        origin (int): The origin parameter controls the placement of the
            filter, relative to the center of the current element of the
            input. Default is ``0``.
    Returns:
        cupy.ndarray: The result of the filtering.
    .. seealso:: :func:`scipy.ndimage.minimum_filter1d`
    """
    return _min_or_max_1d(input, size, axis, output, mode, cval, origin, 'min') 
開發者ID:cupy,項目名稱:cupy,代碼行數:25,代碼來源:filters.py

示例12: _check_nd_args

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def _check_nd_args(input, weights, mode, origins, wghts_name='filter weights'):
    if input.dtype.kind == 'c':
        raise TypeError('Complex type not supported')
    _check_mode(mode)
    # The integer type to use for indices in the input array
    # The indices actually use byte positions and we can't just use
    # input.nbytes since that won't tell us the number of bytes between the
    # first and last elements when the array is non-contiguous
    nbytes = sum((x-1)*abs(stride) for x, stride in
                 zip(input.shape, input.strides)) + input.dtype.itemsize
    int_type = 'int' if nbytes < (1 << 31) else 'ptrdiff_t'
    # However, weights must always be 2 GiB or less
    if weights.nbytes > (1 << 31):
        raise RuntimeError('weights must be 2 GiB or less, use FFTs instead')
    weight_dims = [x for x in weights.shape if x != 0]
    if len(weight_dims) != input.ndim:
        raise RuntimeError('{} array has incorrect shape'.format(wghts_name))
    origins = _fix_sequence_arg(origins, len(weight_dims), 'origin', int)
    for origin, width in zip(origins, weight_dims):
        _check_origin(origin, width)
    return tuple(origins), int_type 
開發者ID:cupy,項目名稱:cupy,代碼行數:23,代碼來源:filters.py

示例13: standard_deviation

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def standard_deviation(input, labels=None, index=None):
    """Calculates the standard deviation of the values of an n-D image array,
    optionally at specified sub-regions.

    Args:
        input (cupy.ndarray): Nd-image data to process.
        labels (cupy.ndarray or None): Labels defining sub-regions in `input`.
            If not None, must be same shape as `input`.
        index (cupy.ndarray or None): `labels` to include in output. If None
            (default), all values where `labels` is non-zero are used.

    Returns:
        standard_deviation (cupy.ndarray): standard deviation of values, for
        each sub-region if `labels` and `index` are specified.

    .. seealso:: :func:`scipy.ndimage.standard_deviation`
    """
    return cupy.sqrt(variance(input, labels, index)) 
開發者ID:cupy,項目名稱:cupy,代碼行數:20,代碼來源:measurements.py

示例14: train_gmm

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def train_gmm(X, max_iter, tol, means, covariances):
    xp = cupy.get_array_module(X)
    lower_bound = -np.infty
    converged = False
    weights = xp.array([0.5, 0.5], dtype=np.float32)
    inv_cov = 1 / xp.sqrt(covariances)

    for n_iter in range(max_iter):
        prev_lower_bound = lower_bound
        log_prob_norm, log_resp = e_step(X, inv_cov, means, weights)
        weights, means, covariances = m_step(X, xp.exp(log_resp))
        inv_cov = 1 / xp.sqrt(covariances)
        lower_bound = log_prob_norm
        change = lower_bound - prev_lower_bound
        if abs(change) < tol:
            converged = True
            break

    if not converged:
        print('Failed to converge. Increase max-iter or tol.')

    return inv_cov, means, weights, covariances 
開發者ID:cupy,項目名稱:cupy,代碼行數:24,代碼來源:gmm.py

示例15: inverse

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import array [as 別名]
def inverse(self, spectrum, in_phase=None):
        if in_phase is None:
            in_phase = self.phase
        else:
            in_phase = cp.array(in_phase)
        spectrum = cp.array(spectrum)
        self.spectrum_buffer[:, -1] = spectrum * in_phase
        self.absolute_buffer[:, -1] = spectrum

        for _ in range(self.loop_num):
            self.overwrap_buf *= 0
            waves = cp.fft.ifft(self.spectrum_buffer, axis=2).real
            last = self.spectrum_buffer

            for i in range(self.buffer_size):
                self.overwrap_buf[:,i*self.wave_dif:i*self.wave_dif+self.wave_len] += waves[:,i]
            waves = cp.stack([self.overwrap_buf[:, i*self.wave_dif:i*self.wave_dif+self.wave_len]*self.window for i in range(self.buffer_size)], axis=1)

            spectrum = cp.fft.fft(waves, axis=2)
            self.spectrum_buffer = self.absolute_buffer * spectrum / (cp.abs(spectrum)+1e-10)
            self.spectrum_buffer += 0.5 * (self.spectrum_buffer - last)

        dst = cp.asnumpy(self.spectrum_buffer[:, 0])
        self.absolute_buffer = cp.roll(self.absolute_buffer, -1, axis=1)
        self.spectrum_buffer = cp.roll(self.spectrum_buffer, -1, axis=1)

        return dst 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:29,代碼來源:gla_gpu.py


注:本文中的cupy.array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。