當前位置: 首頁>>代碼示例>>Python>>正文


Python cupy.argmax方法代碼示例

本文整理匯總了Python中cupy.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python cupy.argmax方法的具體用法?Python cupy.argmax怎麽用?Python cupy.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cupy的用法示例。


在下文中一共展示了cupy.argmax方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: argmax

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import argmax [as 別名]
def argmax(self, axis=None, out=None, sum_duplicates=False):
        """Returns indices of maximum elements along an axis.

        Implicit zero elements are taken into account. If there are several
        maximum values, the index of the first occurrence is returned. If
        ``NaN`` values occur in the matrix, the output defaults to a zero entry
        for the row/column in which the NaN occurs.

        Args:
            axis (int): {-2, -1, 0, 1, ``None``} (optional)
                Axis along which the argmax is computed. If ``None`` (default),
                index of the maximum element in the flatten data is returned.
            out (None): (optional)
                This argument is in the signature *solely* for NumPy
                compatibility reasons. Do not pass in anything except for
                the default value, as this argument is not used.
            sum_duplicates (bool): Flag to indicate that duplicate elements
                should be combined prior to the operation

        Returns:
            (cupy.narray or int): Indices of maximum elements. If array,
                its size along ``axis`` is 1.

        """

        return self._arg_min_or_max(axis, out, cupy.argmax, cupy.greater,
                                    sum_duplicates) 
開發者ID:cupy,項目名稱:cupy,代碼行數:29,代碼來源:data.py

示例2: phasecorr_gpu

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import argmax [as 別名]
def phasecorr_gpu(X, cfRefImg, lcorr):
    ''' not being used - no speed up - may be faster with cuda.jit'''
    nimg,Ly,Lx = X.shape
    ly,lx = cfRefImg.shape[-2:]
    lyhalf = int(np.floor(ly/2))
    lxhalf = int(np.floor(lx/2))

    # put on GPU
    ref_gpu = cp.asarray(cfRefImg)
    x_gpu = cp.asarray(X)

    # phasecorrelation
    x_gpu = fftn(x_gpu, axes=(1,2), overwrite_x=True) * np.sqrt(Ly-1) * np.sqrt(Lx-1)
    for t in range(x_gpu.shape[0]):
        tmp = x_gpu[t,:,:]
        tmp = cp.multiply(tmp, ref_gpu)
        tmp = cp.divide(tmp, cp.absolute(tmp) + 1e-5)
        x_gpu[t,:,:] = tmp
    x_gpu = ifftn(x_gpu, axes=(1,2), overwrite_x=True)  * np.sqrt(Ly-1) * np.sqrt(Lx-1)
    x_gpu = cp.fft.fftshift(cp.real(x_gpu), axes=(1,2))

    # get max index
    x_gpu = x_gpu[cp.ix_(np.arange(0,nimg,1,int),
                    np.arange(lyhalf-lcorr,lyhalf+lcorr+1,1,int),
                    np.arange(lxhalf-lcorr,lxhalf+lcorr+1,1,int))]
    ix = cp.argmax(cp.reshape(x_gpu, (nimg, -1)), axis=1)
    cmax = x_gpu[np.arange(0,nimg,1,int), ix]
    ymax,xmax = cp.unravel_index(ix, (2*lcorr+1,2*lcorr+1))
    cmax = cp.asnumpy(cmax).flatten()
    ymax = cp.asnumpy(ymax)
    xmax = cp.asnumpy(xmax)
    ymax,xmax = ymax-lcorr, xmax-lcorr
    return ymax, xmax, cmax 
開發者ID:MouseLand,項目名稱:suite2p,代碼行數:35,代碼來源:gpu_utils.py

示例3: __call__

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import argmax [as 別名]
def __call__(self, x):
        with chainer.function.force_backprop_mode():
            with chainer.configuration.using_config('train', False):
                if isinstance(x, chainer.Variable):
                    x = x.data

                x = x[:, :, 10:309, 10:309]

                x = chainer.Variable(x)
                hs_enc = self.model(x)
                prob = hs_enc[-1]
                hs_enc = [x] + hs_enc[:-1]

                t = xp.argmax(prob.data, axis=1).astype(xp.int32)
                loss = F.softmax_cross_entropy(prob, t) * float(x.shape[0])
                loss.backward(retain_grad=True)

        del loss
        del prob
        for h in hs_enc:
            h.unchain_backward()

        data_scales = [1e-2, 1e0, 1e0, 1e0, 1e1, 1e0]
        grad_scales = [1e4, 1e3, 1e3, 1e2, 1e2, 1e4]
        for h, ds, gs in zip(hs_enc, data_scales, grad_scales):
            h.data *= ds
            h.grad *= gs

        #self.hoge.append([float(xp.std(h.data)) for h in hs_enc])
        #import numpy as np
        #print(1 / np.mean(self.hoge, axis=0))

        target_sizes = [320, 160, 80, 40, 20, 10]
        for i, h in enumerate(hs_enc):
            t = target_sizes[i]
            s = h.shape[2]

            h = xp.concatenate((h.data, h.grad), axis=1)
            p1 = (t - s) // 2
            p2 = t - s - p1
            h = xp.pad(h, ((0, 0), (0, 0), (p1, p2), (p1, p2)), 'constant', constant_values=0.0)
            hs_enc[i] = h

        return hs_enc 
開發者ID:pfnet-research,項目名稱:nips17-adversarial-attack,代碼行數:46,代碼來源:inception_resnet_v2.py

示例4: _arg_minor_reduce

# 需要導入模塊: import cupy [as 別名]
# 或者: from cupy import argmax [as 別名]
def _arg_minor_reduce(self, ufunc, axis):
        """Reduce nonzeros with a ufunc over the minor axis when non-empty

        Can be applied to a function of self.data by supplying data parameter.
        Warning: this does not call sum_duplicates()

        Args:
            ufunc (object): Function handle giving the operation to be
                conducted.
            axis (int): Maxtrix over which the reduction should be conducted

        Returns:
            (cupy.ndarray): Reduce result for nonzeros in each
                major_index

        """

        # Call to the appropriate kernel function
        if axis == 1:
            # Create the vector to hold output
            value = cupy.zeros(self.shape[0]).astype(cupy.int64)

            # Perform the calculation
            if ufunc == cupy.argmax:
                self._max_arg_reduction_kern(
                    (self.shape[0],), (1,),
                    (self.data.astype(cupy.float64), self.indices,
                     self.indptr[:len(self.indptr) - 1],
                     self.indptr[1:], cupy.int64(self.shape[1]),
                     value))
            if ufunc == cupy.argmin:
                self._min_arg_reduction_kern(
                    (self.shape[0],), (1,),
                    (self.data.astype(cupy.float64), self.indices,
                     self.indptr[:len(self.indptr) - 1],
                     self.indptr[1:], cupy.int64(self.shape[1]),
                     value))

        if axis == 0:
            # Create the vector to hold output
            value = cupy.zeros(self.shape[1]).astype(cupy.int64)

            # Perform the calculation
            if ufunc == cupy.argmax:
                self._max_arg_reduction_kern(
                    (self.shape[1],), (1,),
                    (self.data.astype(cupy.float64), self.indices,
                     self.indptr[:len(self.indptr) - 1],
                     self.indptr[1:], cupy.int64(self.shape[0]),
                     value))
            if ufunc == cupy.argmin:
                self._min_arg_reduction_kern(
                    (self.shape[1],), (1,),
                    (self.data.astype(cupy.float64), self.indices,
                     self.indptr[:len(self.indptr) - 1],
                     self.indptr[1:],
                     cupy.int64(self.shape[0]), value))

        return value 
開發者ID:cupy,項目名稱:cupy,代碼行數:61,代碼來源:compressed.py


注:本文中的cupy.argmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。