本文整理匯總了Python中ctypes.c_void_p方法的典型用法代碼示例。如果您正苦於以下問題:Python ctypes.c_void_p方法的具體用法?Python ctypes.c_void_p怎麽用?Python ctypes.c_void_p使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ctypes
的用法示例。
在下文中一共展示了ctypes.c_void_p方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: c_handle_array
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def c_handle_array(objs):
"""Create ctypes const void ** from a list of MXNet objects with handles.
Parameters
----------
objs : list of NDArray/Symbol.
MXNet objects.
Returns
-------
(ctypes.c_void_p * len(objs))
A void ** pointer that can be passed to C API.
"""
arr = (ctypes.c_void_p * len(objs))()
arr[:] = [o.handle for o in objs]
return arr
示例2: asnumpy
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def asnumpy(self):
"""Returns a ``numpy.ndarray`` object with value copied from this array.
Examples
--------
>>> x = mx.nd.ones((2,3))
>>> y = x.asnumpy()
>>> type(y)
<type 'numpy.ndarray'>
>>> y
array([[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=float32)
>>> z = mx.nd.ones((2,3), dtype='int32')
>>> z.asnumpy()
array([[1, 1, 1],
[1, 1, 1]], dtype=int32)
"""
data = np.empty(self.shape, dtype=self.dtype)
check_call(_LIB.MXNDArraySyncCopyToCPU(
self.handle,
data.ctypes.data_as(ctypes.c_void_p),
ctypes.c_size_t(data.size)))
return data
示例3: set_monitor_callback
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def set_monitor_callback(self, callback):
"""Install callback for monitor.
Parameters
----------
callback : function
Takes a string and an NDArrayHandle.
Examples
--------
>>> def mon_callback(*args, **kwargs):
>>> print("Do your stuff here.")
>>>
>>> texe.set_monitor_callback(mon_callback)
"""
cb_type = ctypes.CFUNCTYPE(None, ctypes.c_char_p, NDArrayHandle, ctypes.c_void_p)
self._monitor_callback = cb_type(_monitor_callback_wrapper(callback))
check_call(_LIB.MXExecutorSetMonitorCallback(
self.handle,
self._monitor_callback,
None))
示例4: backward
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def backward(heads, head_grads=None, retain_graph=False, train_mode=True): #pylint: disable=redefined-outer-name
"""Compute the gradients of heads w.r.t previously marked variables.
Parameters
----------
heads: NDArray or list of NDArray
Output NDArray(s)
head_grads: NDArray or list of NDArray or None
Gradients with respect to heads.
train_mode: bool, optional
Whether to do backward for training or predicting.
"""
head_handles, hgrad_handles = _parse_head(heads, head_grads)
check_call(_LIB.MXAutogradBackwardEx(
len(head_handles),
head_handles,
hgrad_handles,
0,
ctypes.c_void_p(0),
ctypes.c_int(retain_graph),
ctypes.c_int(0),
ctypes.c_int(train_mode),
ctypes.c_void_p(0),
ctypes.c_void_p(0)))
示例5: _symbol_creator
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def _symbol_creator(handle, args, kwargs, keys, vals, name):
sym_handle = SymbolHandle()
check_call(_LIB.MXSymbolCreateAtomicSymbol(
ctypes.c_void_p(handle),
mx_uint(len(keys)),
c_str_array(keys),
c_str_array([str(v) for v in vals]),
ctypes.byref(sym_handle)))
if args and kwargs:
raise TypeError(
'Operators with variable length input can only accept input'
'Symbols either as positional or keyword arguments, not both')
s = _symbol_cls(sym_handle)
if args:
s._compose(*args, name=name)
elif kwargs:
s._compose(name=name, **kwargs)
else:
s._compose(name=name)
return s
示例6: load_default_object
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def load_default_object(self):
v = np.array([[0.0, 0.5, 0.0, 1.0, 1.0, 0.0, 1.0],
[-0.5, -0.5, 0.0, 1.0, 0.0, 1.0, 1.0],
[0.5, -0.5, 0.0, 1.0, 1.0, 1.0, 1.0]], dtype=np.float32)
v = np.concatenate((v,v+0.1), axis=0)
v = np.ascontiguousarray(v, dtype=np.float32)
vbo = glGenBuffers(1)
glBindBuffer (GL_ARRAY_BUFFER, vbo)
glBufferData (GL_ARRAY_BUFFER, v.dtype.itemsize*v.size, v, GL_STATIC_DRAW)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 28, ctypes.c_void_p(0))
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 28, ctypes.c_void_p(12))
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
self.num_to_render = 6;
示例7: _actual_render
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def _actual_render(self):
for entity_id, entity in self.entities.iteritems():
if entity['visible']:
vbo = entity['vbo']
tbo = entity['tbo']
num = entity['num']
glBindBuffer(GL_ARRAY_BUFFER, vbo)
glVertexAttribPointer(self.egl_mapping['vertexs'], 3, GL_FLOAT, GL_FALSE,
20, ctypes.c_void_p(0))
glVertexAttribPointer(self.egl_mapping['vertexs_tc'], 2, GL_FLOAT,
GL_FALSE, 20, ctypes.c_void_p(12))
glEnableVertexAttribArray(self.egl_mapping['vertexs']);
glEnableVertexAttribArray(self.egl_mapping['vertexs_tc']);
glBindTexture(GL_TEXTURE_2D, tbo)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glDrawArrays(GL_TRIANGLES, 0, num)
示例8: ConfigureIOKit
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def ConfigureIOKit():
"""Sets up IOKit.
We use ctypes to call functions in shared libraries to create, access and
manipulate C data types in Python. For more information about ctypes, see:
http://python.net/crew/theller/ctypes/
http://code.rancidbacon.com/LearningAboutMacOSXNativePythonProgramming
Returns:
io_lib: IOKit library
"""
io_lib = ctypes.cdll.LoadLibrary(
'/System/Library/Frameworks/IOKit.framework/IOKit')
io_lib.IOPMAssertionCreateWithName.argtypes = [
ctypes.c_void_p,
ctypes.c_uint32,
ctypes.c_void_p,
ctypes.POINTER(ctypes.c_uint32)]
io_lib.IOPMAssertionRelease.argtypes = [ctypes.c_uint32]
return io_lib
示例9: get
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def get(self, key, verify_checksums=False, fill_cache=True):
error = ctypes.POINTER(ctypes.c_char)()
options = _ldb.leveldb_readoptions_create()
_ldb.leveldb_readoptions_set_verify_checksums(options,
verify_checksums)
_ldb.leveldb_readoptions_set_fill_cache(options, fill_cache)
if self._snapshot is not None:
_ldb.leveldb_readoptions_set_snapshot(options, self._snapshot.ref)
size = ctypes.c_size_t(0)
val_p = _ldb.leveldb_get(self._db.ref, options, key, len(key),
ctypes.byref(size), ctypes.byref(error))
if bool(val_p):
val = ctypes.string_at(val_p, size.value)
_ldb.leveldb_free(ctypes.cast(val_p, ctypes.c_void_p))
else:
val = None
_ldb.leveldb_readoptions_destroy(options)
_checkError(error)
return val
# pylint: disable=W0212
示例10: approximateDiskSizes
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def approximateDiskSizes(self, *ranges):
if self._snapshot is not None:
raise TypeError("cannot calculate disk sizes on leveldb snapshot")
assert len(ranges) > 0
key_type = ctypes.c_void_p * len(ranges)
len_type = ctypes.c_size_t * len(ranges)
start_keys, start_lens = key_type(), len_type()
end_keys, end_lens = key_type(), len_type()
sizes = (ctypes.c_uint64 * len(ranges))()
for i, range_ in enumerate(ranges):
assert isinstance(range_, tuple) and len(range_) == 2
assert isinstance(range_[0], str) and isinstance(range_[1], str)
start_keys[i] = ctypes.cast(range_[0], ctypes.c_void_p)
end_keys[i] = ctypes.cast(range_[1], ctypes.c_void_p)
start_lens[i], end_lens[i] = len(range_[0]), len(range_[1])
_ldb.leveldb_approximate_sizes(self._db.ref, len(ranges), start_keys,
start_lens, end_keys, end_lens, sizes)
return list(sizes)
示例11: _contract_rho
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def _contract_rho(bra, ket):
#:rho = numpy.einsum('pi,pi->p', bra.real, ket.real)
#:rho += numpy.einsum('pi,pi->p', bra.imag, ket.imag)
bra = bra.T
ket = ket.T
nao, ngrids = bra.shape
rho = numpy.empty(ngrids)
if not (bra.flags.c_contiguous and ket.flags.c_contiguous):
rho = numpy.einsum('ip,ip->p', bra.real, ket.real)
rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag)
elif bra.dtype == numpy.double and ket.dtype == numpy.double:
libdft.VXC_dcontract_rho(rho.ctypes.data_as(ctypes.c_void_p),
bra.ctypes.data_as(ctypes.c_void_p),
ket.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nao), ctypes.c_int(ngrids))
elif bra.dtype == numpy.complex128 and ket.dtype == numpy.complex128:
libdft.VXC_zcontract_rho(rho.ctypes.data_as(ctypes.c_void_p),
bra.ctypes.data_as(ctypes.c_void_p),
ket.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nao), ctypes.c_int(ngrids))
else:
rho = numpy.einsum('ip,ip->p', bra.real, ket.real)
rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag)
return rho
示例12: __init__
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def __init__(self, mol, intor,
prescreen='CVHFnoscreen', qcondname=None, dmcondname=None):
'''If function "qcondname" is presented, the qcond (sqrt(integrals))
and will be initialized in __init__.
'''
intor = mol._add_suffix(intor)
self._this = ctypes.POINTER(_CVHFOpt)()
#print self._this.contents, expect ValueError: NULL pointer access
self._intor = intor
self._cintopt = make_cintopt(mol._atm, mol._bas, mol._env, intor)
self._dmcondname = dmcondname
natm = ctypes.c_int(mol.natm)
nbas = ctypes.c_int(mol.nbas)
libcvhf.CVHFinit_optimizer(ctypes.byref(self._this),
mol._atm.ctypes.data_as(ctypes.c_void_p), natm,
mol._bas.ctypes.data_as(ctypes.c_void_p), nbas,
mol._env.ctypes.data_as(ctypes.c_void_p))
self.prescreen = prescreen
if qcondname is not None:
self.init_cvhf_direct(mol, intor, qcondname)
示例13: set_dm
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def set_dm(self, dm, atm, bas, env):
if self._dmcondname is not None:
c_atm = numpy.asarray(atm, dtype=numpy.int32, order='C')
c_bas = numpy.asarray(bas, dtype=numpy.int32, order='C')
c_env = numpy.asarray(env, dtype=numpy.double, order='C')
natm = ctypes.c_int(c_atm.shape[0])
nbas = ctypes.c_int(c_bas.shape[0])
if isinstance(dm, numpy.ndarray) and dm.ndim == 2:
n_dm = 1
else:
n_dm = len(dm)
dm = numpy.asarray(dm, order='C')
ao_loc = make_loc(c_bas, self._intor)
fsetdm = getattr(libcvhf, self._dmcondname)
fsetdm(self._this,
dm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(n_dm),
ao_loc.ctypes.data_as(ctypes.c_void_p),
c_atm.ctypes.data_as(ctypes.c_void_p), natm,
c_bas.ctypes.data_as(ctypes.c_void_p), nbas,
c_env.ctypes.data_as(ctypes.c_void_p))
示例14: select_strs
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def select_strs(myci, eri, eri_pq_max, civec_max, strs, norb, nelec):
strs = numpy.asarray(strs, dtype=numpy.int64)
nstrs = len(strs)
nvir = norb - nelec
strs_add = numpy.empty((nstrs*(nelec*nvir)**2//4), dtype=numpy.int64)
libfci.SCIselect_strs.restype = ctypes.c_int
nadd = libfci.SCIselect_strs(strs_add.ctypes.data_as(ctypes.c_void_p),
strs.ctypes.data_as(ctypes.c_void_p),
eri.ctypes.data_as(ctypes.c_void_p),
eri_pq_max.ctypes.data_as(ctypes.c_void_p),
civec_max.ctypes.data_as(ctypes.c_void_p),
ctypes.c_double(myci.select_cutoff),
ctypes.c_int(norb), ctypes.c_int(nelec),
ctypes.c_int(nstrs))
strs_add = sorted(set(strs_add[:nadd]) - set(strs))
return numpy.asarray(strs_add, dtype=numpy.int64)
示例15: gen_cre_linkstr
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_void_p [as 別名]
def gen_cre_linkstr(strs, norb, nelec):
'''Given intermediates, the link table to generate input strs
'''
if nelec == norb:
return None
strs = numpy.asarray(strs, dtype=numpy.int64)
nvir = norb - nelec
nstrs = len(strs)
inter = numpy.empty((nstrs*nvir), dtype=numpy.int64)
libfci.SCIcre_uniq_strs.restype = ctypes.c_int
ninter = libfci.SCIcre_uniq_strs(inter.ctypes.data_as(ctypes.c_void_p),
strs.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(norb), ctypes.c_int(nelec),
ctypes.c_int(nstrs))
inter = numpy.asarray(sorted(set(inter[:ninter])), dtype=numpy.int64)
ninter = len(inter)
link_index = numpy.zeros((ninter,nelec+1,4), dtype=numpy.int32)
libfci.SCIcre_linkstr(link_index.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(norb), ctypes.c_int(nelec),
ctypes.c_int(nstrs), ctypes.c_int(ninter),
strs.ctypes.data_as(ctypes.c_void_p),
inter.ctypes.data_as(ctypes.c_void_p))
return link_index