本文整理匯總了Python中ctypes.c_int方法的典型用法代碼示例。如果您正苦於以下問題:Python ctypes.c_int方法的具體用法?Python ctypes.c_int怎麽用?Python ctypes.c_int使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ctypes
的用法示例。
在下文中一共展示了ctypes.c_int方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def main():
args = parse_args()
lhs_row_dim = int(args.lhs_row_dim)
lhs_col_dim = int(args.lhs_col_dim)
rhs_col_dim = int(args.rhs_col_dim)
density = float(args.density)
lhs_stype = args.lhs_stype
rhs_stype = args.rhs_stype
if args.rhs_density:
rhs_density = float(args.rhs_density)
else:
rhs_density = density
dot_func = mx.nd.sparse.dot if lhs_stype == "csr" else mx.nd.dot
check_call(_LIB.MXSetNumOMPThreads(ctypes.c_int(args.num_omp_threads)))
bench_dot(lhs_row_dim, lhs_col_dim, rhs_col_dim, density,
rhs_density, dot_func, False, lhs_stype, rhs_stype, args.only_storage)
示例2: copyMakeBorder
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def copyMakeBorder(src, top, bot, left, right, border_type=cv2.BORDER_CONSTANT, value=0):
"""Pad image border
Wrapper for cv2.copyMakeBorder that uses mx.nd.NDArray
Parameters
----------
src : NDArray
Image in (width, height, channels).
Others are the same with cv2.copyMakeBorder
Returns
-------
img : NDArray
padded image
"""
hdl = NDArrayHandle()
check_call(_LIB.MXCVcopyMakeBorder(src.handle, ctypes.c_int(top), ctypes.c_int(bot),
ctypes.c_int(left), ctypes.c_int(right),
ctypes.c_int(border_type), ctypes.c_double(value),
ctypes.byref(hdl)))
return mx.nd.NDArray(hdl)
示例3: set_state
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_state(state='stop', profile_process='worker'):
"""Set up the profiler state to 'run' or 'stop'.
Parameters
----------
state : string, optional
Indicates whether to run the profiler, can
be 'stop' or 'run'. Default is `stop`.
profile_process : string
whether to profile kvstore `server` or `worker`.
server can only be profiled when kvstore is of type dist.
if this is not passed, defaults to `worker`
"""
state2int = {'stop': 0, 'run': 1}
profile_process2int = {'worker': 0, 'server': 1}
check_call(_LIB.MXSetProcessProfilerState(ctypes.c_int(state2int[state]),
profile_process2int[profile_process],
profiler_kvstore_handle))
示例4: set_bulk_size
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_bulk_size(size):
"""Set size limit on bulk execution.
Bulk execution bundles many operators to run together.
This can improve performance when running a lot of small
operators sequentially.
Parameters
----------
size : int
Maximum number of operators that can be bundled in a bulk.
Returns
-------
int
Previous bulk size.
"""
prev = ctypes.c_int()
check_call(_LIB.MXEngineSetBulkSize(
ctypes.c_int(size), ctypes.byref(prev)))
return prev.value
示例5: num_gpus
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def num_gpus():
"""Query CUDA for the number of GPUs present.
Raises
------
Will raise an exception on any CUDA error.
Returns
-------
count : int
The number of GPUs.
"""
count = ctypes.c_int()
check_call(_LIB.MXGetGPUCount(ctypes.byref(count)))
return count.value
示例6: _new_alloc_handle
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t):
"""Return a new handle with specified shape and context.
Empty handle is only used to hold results.
Returns
-------
handle
A new empty `NDArray` handle.
"""
hdl = NDArrayHandle()
check_call(_LIB.MXNDArrayCreateEx(
c_array_buf(mx_uint, native_array('I', shape)),
mx_uint(len(shape)),
ctypes.c_int(ctx.device_typeid),
ctypes.c_int(ctx.device_id),
ctypes.c_int(int(delay_alloc)),
ctypes.c_int(int(_DTYPE_NP_TO_MX[np.dtype(dtype).type])),
ctypes.byref(hdl)))
return hdl
示例7: dtype
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def dtype(self):
"""Data-type of the array's elements.
Returns
-------
numpy.dtype
This NDArray's data type.
Examples
--------
>>> x = mx.nd.zeros((2,3))
>>> x.dtype
<type 'numpy.float32'>
>>> y = mx.nd.zeros((2,3), dtype='int32')
>>> y.dtype
<type 'numpy.int32'>
"""
mx_dtype = ctypes.c_int()
check_call(_LIB.MXNDArrayGetDType(
self.handle, ctypes.byref(mx_dtype)))
return _DTYPE_MX_TO_NP[mx_dtype.value]
示例8: name
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def name(self):
"""Gets name string from the symbol, this function only works for non-grouped symbol.
Returns
-------
value : str
The name of this symbol, returns ``None`` for grouped symbol.
"""
ret = ctypes.c_char_p()
success = ctypes.c_int()
check_call(_LIB.MXSymbolGetName(
self.handle, ctypes.byref(ret), ctypes.byref(success)))
if success.value != 0:
return py_str(ret.value)
else:
return None
示例9: set_recording
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_recording(is_recording): #pylint: disable=redefined-outer-name
"""Set status to recording/not recording. When recording, graph will be constructed
for gradient computation.
Parameters
----------
is_recording: bool
Returns
-------
previous state before this set.
"""
prev = ctypes.c_int()
check_call(_LIB.MXAutogradSetIsRecording(
ctypes.c_int(is_recording), ctypes.byref(prev)))
return bool(prev.value)
示例10: set_training
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_training(train_mode): #pylint: disable=redefined-outer-name
"""Set status to training/predicting. This affects ctx.is_train in operator
running context. For example, Dropout will drop inputs randomly when
train_mode=True while simply passing through if train_mode=False.
Parameters
----------
train_mode: bool
Returns
-------
previous state before this set.
"""
prev = ctypes.c_int()
check_call(_LIB.MXAutogradSetIsTraining(
ctypes.c_int(train_mode), ctypes.byref(prev)))
return bool(prev.value)
示例11: backward
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def backward(heads, head_grads=None, retain_graph=False, train_mode=True): #pylint: disable=redefined-outer-name
"""Compute the gradients of heads w.r.t previously marked variables.
Parameters
----------
heads: NDArray or list of NDArray
Output NDArray(s)
head_grads: NDArray or list of NDArray or None
Gradients with respect to heads.
train_mode: bool, optional
Whether to do backward for training or predicting.
"""
head_handles, hgrad_handles = _parse_head(heads, head_grads)
check_call(_LIB.MXAutogradBackwardEx(
len(head_handles),
head_handles,
hgrad_handles,
0,
ctypes.c_void_p(0),
ctypes.c_int(retain_graph),
ctypes.c_int(0),
ctypes.c_int(train_mode),
ctypes.c_void_p(0),
ctypes.c_void_p(0)))
示例12: next
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def next(self):
if self._debug_skip_load and not self._debug_at_begin:
return DataBatch(data=[self.getdata()], label=[self.getlabel()], pad=self.getpad(),
index=self.getindex())
if self.first_batch is not None:
batch = self.first_batch
self.first_batch = None
return batch
self._debug_at_begin = False
next_res = ctypes.c_int(0)
check_call(_LIB.MXDataIterNext(self.handle, ctypes.byref(next_res)))
if next_res.value:
return DataBatch(data=[self.getdata()], label=[self.getlabel()], pad=self.getpad(),
index=self.getindex())
else:
raise StopIteration
示例13: IsTextConsole
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def IsTextConsole():
"""Checks if console is test only or GUI.
Returns:
True if the console is text-only, False if GUI is available
"""
try:
# see TN2083
security_lib = ctypes.cdll.LoadLibrary(
'/System/Library/Frameworks/Security.framework/Security')
# Security.Framework/Headers/AuthSession.h
session = -1
session_id = ctypes.c_int(0)
attributes = ctypes.c_int(0)
ret = security_lib.SessionGetInfo(
session, ctypes.byref(session_id), ctypes.byref(attributes))
if ret != 0:
return True
return not attributes.value & SESSIONHASGRAPHICACCESS
except OSError:
return True
示例14: xc_type
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def xc_type(xc_code):
if xc_code is None:
return None
elif isinstance(xc_code, str):
if is_nlc(xc_code):
return 'NLC'
hyb, fn_facs = parse_xc(xc_code)
else:
fn_facs = [(xc_code, 1)] # mimic fn_facs
if not fn_facs:
return 'HF'
elif all(_itrf.LIBXC_is_lda(ctypes.c_int(xid)) for xid, fac in fn_facs):
return 'LDA'
elif any(_itrf.LIBXC_is_meta_gga(ctypes.c_int(xid)) for xid, fac in fn_facs):
return 'MGGA'
else:
# any(_itrf.LIBXC_is_gga(ctypes.c_int(xid)) for xid, fac in fn_facs)
# include hybrid_xc
return 'GGA'
示例15: _contract_rho
# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def _contract_rho(bra, ket):
#:rho = numpy.einsum('pi,pi->p', bra.real, ket.real)
#:rho += numpy.einsum('pi,pi->p', bra.imag, ket.imag)
bra = bra.T
ket = ket.T
nao, ngrids = bra.shape
rho = numpy.empty(ngrids)
if not (bra.flags.c_contiguous and ket.flags.c_contiguous):
rho = numpy.einsum('ip,ip->p', bra.real, ket.real)
rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag)
elif bra.dtype == numpy.double and ket.dtype == numpy.double:
libdft.VXC_dcontract_rho(rho.ctypes.data_as(ctypes.c_void_p),
bra.ctypes.data_as(ctypes.c_void_p),
ket.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nao), ctypes.c_int(ngrids))
elif bra.dtype == numpy.complex128 and ket.dtype == numpy.complex128:
libdft.VXC_zcontract_rho(rho.ctypes.data_as(ctypes.c_void_p),
bra.ctypes.data_as(ctypes.c_void_p),
ket.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nao), ctypes.c_int(ngrids))
else:
rho = numpy.einsum('ip,ip->p', bra.real, ket.real)
rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag)
return rho