當前位置: 首頁>>代碼示例>>Python>>正文


Python ctypes.c_int方法代碼示例

本文整理匯總了Python中ctypes.c_int方法的典型用法代碼示例。如果您正苦於以下問題:Python ctypes.c_int方法的具體用法?Python ctypes.c_int怎麽用?Python ctypes.c_int使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ctypes的用法示例。


在下文中一共展示了ctypes.c_int方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def main():
    args = parse_args()
    lhs_row_dim = int(args.lhs_row_dim)
    lhs_col_dim = int(args.lhs_col_dim)
    rhs_col_dim = int(args.rhs_col_dim)
    density = float(args.density)
    lhs_stype = args.lhs_stype
    rhs_stype = args.rhs_stype
    if args.rhs_density:
        rhs_density = float(args.rhs_density)
    else:
        rhs_density = density
    dot_func = mx.nd.sparse.dot if lhs_stype == "csr" else mx.nd.dot
    check_call(_LIB.MXSetNumOMPThreads(ctypes.c_int(args.num_omp_threads)))
    bench_dot(lhs_row_dim, lhs_col_dim, rhs_col_dim, density,
              rhs_density, dot_func, False, lhs_stype, rhs_stype, args.only_storage) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:memory_benchmark.py

示例2: copyMakeBorder

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def copyMakeBorder(src, top, bot, left, right, border_type=cv2.BORDER_CONSTANT, value=0):
    """Pad image border
    Wrapper for cv2.copyMakeBorder that uses mx.nd.NDArray

    Parameters
    ----------
    src : NDArray
        Image in (width, height, channels).
        Others are the same with cv2.copyMakeBorder

    Returns
    -------
    img : NDArray
        padded image
    """
    hdl = NDArrayHandle()
    check_call(_LIB.MXCVcopyMakeBorder(src.handle, ctypes.c_int(top), ctypes.c_int(bot),
                                       ctypes.c_int(left), ctypes.c_int(right),
                                       ctypes.c_int(border_type), ctypes.c_double(value),
                                       ctypes.byref(hdl)))
    return mx.nd.NDArray(hdl) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:opencv.py

示例3: set_state

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_state(state='stop', profile_process='worker'):
    """Set up the profiler state to 'run' or 'stop'.

    Parameters
    ----------
    state : string, optional
        Indicates whether to run the profiler, can
        be 'stop' or 'run'. Default is `stop`.
    profile_process : string
        whether to profile kvstore `server` or `worker`.
        server can only be profiled when kvstore is of type dist.
        if this is not passed, defaults to `worker`
    """
    state2int = {'stop': 0, 'run': 1}
    profile_process2int = {'worker': 0, 'server': 1}
    check_call(_LIB.MXSetProcessProfilerState(ctypes.c_int(state2int[state]),
                                              profile_process2int[profile_process],
                                              profiler_kvstore_handle)) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:profiler.py

示例4: set_bulk_size

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_bulk_size(size):
    """Set size limit on bulk execution.

    Bulk execution bundles many operators to run together.
    This can improve performance when running a lot of small
    operators sequentially.

    Parameters
    ----------
    size : int
        Maximum number of operators that can be bundled in a bulk.

    Returns
    -------
    int
        Previous bulk size.
    """
    prev = ctypes.c_int()
    check_call(_LIB.MXEngineSetBulkSize(
        ctypes.c_int(size), ctypes.byref(prev)))
    return prev.value 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:engine.py

示例5: num_gpus

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def num_gpus():
    """Query CUDA for the number of GPUs present.

    Raises
    ------
    Will raise an exception on any CUDA error.

    Returns
    -------
    count : int
        The number of GPUs.

    """
    count = ctypes.c_int()
    check_call(_LIB.MXGetGPUCount(ctypes.byref(count)))
    return count.value 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:context.py

示例6: _new_alloc_handle

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t):
    """Return a new handle with specified shape and context.

    Empty handle is only used to hold results.

    Returns
    -------
    handle
        A new empty `NDArray` handle.
    """
    hdl = NDArrayHandle()
    check_call(_LIB.MXNDArrayCreateEx(
        c_array_buf(mx_uint, native_array('I', shape)),
        mx_uint(len(shape)),
        ctypes.c_int(ctx.device_typeid),
        ctypes.c_int(ctx.device_id),
        ctypes.c_int(int(delay_alloc)),
        ctypes.c_int(int(_DTYPE_NP_TO_MX[np.dtype(dtype).type])),
        ctypes.byref(hdl)))
    return hdl 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:ndarray.py

示例7: dtype

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def dtype(self):
        """Data-type of the array's elements.

        Returns
        -------
        numpy.dtype
            This NDArray's data type.

        Examples
        --------
        >>> x = mx.nd.zeros((2,3))
        >>> x.dtype
        <type 'numpy.float32'>
        >>> y = mx.nd.zeros((2,3), dtype='int32')
        >>> y.dtype
        <type 'numpy.int32'>
        """
        mx_dtype = ctypes.c_int()
        check_call(_LIB.MXNDArrayGetDType(
            self.handle, ctypes.byref(mx_dtype)))
        return _DTYPE_MX_TO_NP[mx_dtype.value] 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:ndarray.py

示例8: name

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def name(self):
        """Gets name string from the symbol, this function only works for non-grouped symbol.

        Returns
        -------
        value : str
            The name of this symbol, returns ``None`` for grouped symbol.
        """
        ret = ctypes.c_char_p()
        success = ctypes.c_int()
        check_call(_LIB.MXSymbolGetName(
            self.handle, ctypes.byref(ret), ctypes.byref(success)))
        if success.value != 0:
            return py_str(ret.value)
        else:
            return None 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:symbol.py

示例9: set_recording

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_recording(is_recording): #pylint: disable=redefined-outer-name
    """Set status to recording/not recording. When recording, graph will be constructed
    for gradient computation.

    Parameters
    ----------
    is_recording: bool

    Returns
    -------
    previous state before this set.
    """
    prev = ctypes.c_int()
    check_call(_LIB.MXAutogradSetIsRecording(
        ctypes.c_int(is_recording), ctypes.byref(prev)))
    return bool(prev.value) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:autograd.py

示例10: set_training

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def set_training(train_mode): #pylint: disable=redefined-outer-name
    """Set status to training/predicting. This affects ctx.is_train in operator
    running context. For example, Dropout will drop inputs randomly when
    train_mode=True while simply passing through if train_mode=False.

    Parameters
    ----------
    train_mode: bool

    Returns
    -------
    previous state before this set.
    """
    prev = ctypes.c_int()
    check_call(_LIB.MXAutogradSetIsTraining(
        ctypes.c_int(train_mode), ctypes.byref(prev)))
    return bool(prev.value) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:19,代碼來源:autograd.py

示例11: backward

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def backward(heads, head_grads=None, retain_graph=False, train_mode=True): #pylint: disable=redefined-outer-name
    """Compute the gradients of heads w.r.t previously marked variables.

    Parameters
    ----------
    heads: NDArray or list of NDArray
        Output NDArray(s)
    head_grads: NDArray or list of NDArray or None
        Gradients with respect to heads.
    train_mode: bool, optional
        Whether to do backward for training or predicting.
    """
    head_handles, hgrad_handles = _parse_head(heads, head_grads)

    check_call(_LIB.MXAutogradBackwardEx(
        len(head_handles),
        head_handles,
        hgrad_handles,
        0,
        ctypes.c_void_p(0),
        ctypes.c_int(retain_graph),
        ctypes.c_int(0),
        ctypes.c_int(train_mode),
        ctypes.c_void_p(0),
        ctypes.c_void_p(0))) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:autograd.py

示例12: next

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def next(self):
        if self._debug_skip_load and not self._debug_at_begin:
            return  DataBatch(data=[self.getdata()], label=[self.getlabel()], pad=self.getpad(),
                              index=self.getindex())
        if self.first_batch is not None:
            batch = self.first_batch
            self.first_batch = None
            return batch
        self._debug_at_begin = False
        next_res = ctypes.c_int(0)
        check_call(_LIB.MXDataIterNext(self.handle, ctypes.byref(next_res)))
        if next_res.value:
            return DataBatch(data=[self.getdata()], label=[self.getlabel()], pad=self.getpad(),
                             index=self.getindex())
        else:
            raise StopIteration 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:io.py

示例13: IsTextConsole

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def IsTextConsole():
  """Checks if console is test only or GUI.

  Returns:
    True if the console is text-only, False if GUI is available
  """
  try:
    # see TN2083
    security_lib = ctypes.cdll.LoadLibrary(
        '/System/Library/Frameworks/Security.framework/Security')

    # Security.Framework/Headers/AuthSession.h
    session = -1
    session_id = ctypes.c_int(0)
    attributes = ctypes.c_int(0)

    ret = security_lib.SessionGetInfo(
        session, ctypes.byref(session_id), ctypes.byref(attributes))

    if ret != 0:
      return True

    return not attributes.value & SESSIONHASGRAPHICACCESS
  except OSError:
    return True 
開發者ID:google,項目名稱:macops,代碼行數:27,代碼來源:gmacpyutil.py

示例14: xc_type

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def xc_type(xc_code):
    if xc_code is None:
        return None
    elif isinstance(xc_code, str):
        if is_nlc(xc_code):
            return 'NLC'
        hyb, fn_facs = parse_xc(xc_code)
    else:
        fn_facs = [(xc_code, 1)]  # mimic fn_facs
    if not fn_facs:
        return 'HF'
    elif all(_itrf.LIBXC_is_lda(ctypes.c_int(xid)) for xid, fac in fn_facs):
        return 'LDA'
    elif any(_itrf.LIBXC_is_meta_gga(ctypes.c_int(xid)) for xid, fac in fn_facs):
        return 'MGGA'
    else:
        # any(_itrf.LIBXC_is_gga(ctypes.c_int(xid)) for xid, fac in fn_facs)
        # include hybrid_xc
        return 'GGA' 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:21,代碼來源:libxc.py

示例15: _contract_rho

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_int [as 別名]
def _contract_rho(bra, ket):
    #:rho  = numpy.einsum('pi,pi->p', bra.real, ket.real)
    #:rho += numpy.einsum('pi,pi->p', bra.imag, ket.imag)
    bra = bra.T
    ket = ket.T
    nao, ngrids = bra.shape
    rho = numpy.empty(ngrids)

    if not (bra.flags.c_contiguous and ket.flags.c_contiguous):
        rho  = numpy.einsum('ip,ip->p', bra.real, ket.real)
        rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag)
    elif bra.dtype == numpy.double and ket.dtype == numpy.double:
        libdft.VXC_dcontract_rho(rho.ctypes.data_as(ctypes.c_void_p),
                                 bra.ctypes.data_as(ctypes.c_void_p),
                                 ket.ctypes.data_as(ctypes.c_void_p),
                                 ctypes.c_int(nao), ctypes.c_int(ngrids))
    elif bra.dtype == numpy.complex128 and ket.dtype == numpy.complex128:
        libdft.VXC_zcontract_rho(rho.ctypes.data_as(ctypes.c_void_p),
                                 bra.ctypes.data_as(ctypes.c_void_p),
                                 ket.ctypes.data_as(ctypes.c_void_p),
                                 ctypes.c_int(nao), ctypes.c_int(ngrids))
    else:
        rho  = numpy.einsum('ip,ip->p', bra.real, ket.real)
        rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag)
    return rho 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:27,代碼來源:numint.py


注:本文中的ctypes.c_int方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。