當前位置: 首頁>>代碼示例>>Python>>正文


Python ctypes.c_double方法代碼示例

本文整理匯總了Python中ctypes.c_double方法的典型用法代碼示例。如果您正苦於以下問題:Python ctypes.c_double方法的具體用法?Python ctypes.c_double怎麽用?Python ctypes.c_double使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ctypes的用法示例。


在下文中一共展示了ctypes.c_double方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: copyMakeBorder

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def copyMakeBorder(src, top, bot, left, right, border_type=cv2.BORDER_CONSTANT, value=0):
    """Pad image border
    Wrapper for cv2.copyMakeBorder that uses mx.nd.NDArray

    Parameters
    ----------
    src : NDArray
        Image in (width, height, channels).
        Others are the same with cv2.copyMakeBorder

    Returns
    -------
    img : NDArray
        padded image
    """
    hdl = NDArrayHandle()
    check_call(_LIB.MXCVcopyMakeBorder(src.handle, ctypes.c_int(top), ctypes.c_int(bot),
                                       ctypes.c_int(left), ctypes.c_int(right),
                                       ctypes.c_int(border_type), ctypes.c_double(value),
                                       ctypes.byref(hdl)))
    return mx.nd.NDArray(hdl) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:opencv.py

示例2: _score_matrix

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def _score_matrix(self, X):
        if self.explore_cnt < self.explore_rounds:
            self.explore_cnt += X.shape[0]

            # case 1: all predictions are within allowance
            if self.explore_cnt <= self.explore_rounds:
                scores = self.random_state.random(size=(X.shape[0], self.nchoices))
                self._choose_active(X, scores, choose=False)
            
            # case 2: some predictions are within allowance, others are not
            else:
                scores = np.empty((X.shape[0], self.nchoices), type = ctypes.c_double)
                scores[:n_explore] = self.random_state.random(size=(n_explore, self.nchoices))
                self._choose_active(X[:n_explore], scores[:n_explore], choose=False)
                scores[n_explore:] = self._oracles.decision_function(X[n_explore:])
            
        else:
            scores = self._oracles.decision_function(X)

        return scores 
開發者ID:david-cortes,項目名稱:contextualbandits,代碼行數:22,代碼來源:online.py

示例3: fit

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def fit(self, X, y):
        if X.shape[0] == 0:
            return self
        elif np.unique(y).shape[0] <= 1:
            self.update_aux(y)
            return self

        seed = self.random_state.integers(np.iinfo(np.int32).max)
        self.model.set_params(random_state = seed)
        self.model.fit(X, y)
        n_nodes = self.model.tree_.node_count
        self.pos = np.zeros(n_nodes, dtype=ctypes.c_long)
        self.neg = np.zeros(n_nodes, dtype=ctypes.c_long)
        pred_node = self.model.apply(X).astype(ctypes.c_long)
        _create_node_counters(self.pos, self.neg, pred_node, y.astype(ctypes.c_double))
        self.pos = self.pos.astype(ctypes.c_double) + self.beta_prior[0]
        self.neg = self.neg.astype(ctypes.c_double) + self.beta_prior[1]

        self.is_fitted = True
        return self 
開發者ID:david-cortes,項目名稱:contextualbandits,代碼行數:22,代碼來源:utils.py

示例4: test_libxc_cam_beta_bug

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def test_libxc_cam_beta_bug(self):
        '''As a detector for libxc-3.0.0. libxc-3.0.1 fixed this bug
        '''
        import ctypes
        rsh_tmp = (ctypes.c_double*3)()
        dft.libxc._itrf.LIBXC_rsh_coeff(1, rsh_tmp)
        beta = rsh_tmp[2]
        self.assertEqual(beta, 0)

        dft.libxc._itrf.LIBXC_rsh_coeff(433, rsh_tmp)
        dft.libxc._itrf.LIBXC_rsh_coeff(1, rsh_tmp)
        beta = rsh_tmp[2]
        self.assertEqual(beta, 0) # libxc-3.0.0 produces -0.46

        dft.libxc._itrf.LIBXC_is_hybrid(1)
        dft.libxc._itrf.LIBXC_rsh_coeff(1, rsh_tmp)
        beta = rsh_tmp[2]
        self.assertEqual(beta, 0) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:20,代碼來源:test_libxc.py

示例5: select_strs

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def select_strs(myci, eri, eri_pq_max, civec_max, strs, norb, nelec):
    strs = numpy.asarray(strs, dtype=numpy.int64)
    nstrs = len(strs)
    nvir = norb - nelec
    strs_add = numpy.empty((nstrs*(nelec*nvir)**2//4), dtype=numpy.int64)
    libfci.SCIselect_strs.restype = ctypes.c_int
    nadd = libfci.SCIselect_strs(strs_add.ctypes.data_as(ctypes.c_void_p),
                                 strs.ctypes.data_as(ctypes.c_void_p),
                                 eri.ctypes.data_as(ctypes.c_void_p),
                                 eri_pq_max.ctypes.data_as(ctypes.c_void_p),
                                 civec_max.ctypes.data_as(ctypes.c_void_p),
                                 ctypes.c_double(myci.select_cutoff),
                                 ctypes.c_int(norb), ctypes.c_int(nelec),
                                 ctypes.c_int(nstrs))
    strs_add = sorted(set(strs_add[:nadd]) - set(strs))
    return numpy.asarray(strs_add, dtype=numpy.int64) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:selected_ci.py

示例6: rsphar

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def rsphar(r,lmax,res):
  """
    Computes (all) real spherical harmonics up to the angular momentum lmax
    Args:
      r : Cartesian coordinates defining correct theta and phi angles for spherical harmonic
      lmax : Integer, maximal angular momentum
    Result:
      1-d numpy array of float64 elements with all spherical harmonics stored in order 0,0; 1,-1; 1,0; 1,+1 ... lmax,lmax, althogether 0 : (lmax+1)**2 elements.
  """
  assert r.shape[-1]==3
  
  r_cp = np.require(r,  dtype=float, requirements='C')
  res = np.require(res,  dtype=float, requirements='CW')
  
  libnao.rsphar(r_cp.ctypes.data_as(POINTER(c_double)), c_int64(lmax), res.ctypes.data_as(POINTER(c_double)))
  return 0

#
#
# 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:22,代碼來源:m_rsphar_libnao.py

示例7: rsphar_vec

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def rsphar_vec(rvs,lmax):
  """
    Computes (all) real spherical harmonics up to the angular momentum lmax
    Args:
      rvs : Cartesian coordinates defining correct theta and phi angles for spherical harmonic
      lmax : Integer, maximal angular momentum
    Result:
      1-d numpy array of float64 elements with all spherical harmonics stored in order 0,0; 1,-1; 1,0; 1,+1 ... lmax,lmax, althogether 0 : (lmax+1)**2 elements.
  """
  assert rvs.shape[-1]==3
  r_cp = np.require(rvs,  dtype=float, requirements='C')
  nc = len(rvs)
  res = np.require( np.zeros((nc, (lmax+1)**2)), dtype=float, requirements='CW')
  libnao.rsphar_vec(r_cp.ctypes.data_as(POINTER(c_double)), c_int64(nc), c_int64(lmax), res.ctypes.data_as(POINTER(c_double)))
  
  #for irv,rvec in enumerate(rvs): rsphar(rvec,lmax,res[irv,:])
  return res

#
#
# 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:23,代碼來源:m_rsphar_libnao.py

示例8: rsphar_exp_vec

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def rsphar_exp_vec(rvs,lmax):
  """
    Computes (all) real spherical harmonics up to the angular momentum lmax
    Args:
      rvs : Cartesian coordinates defining correct theta and phi angles for spherical harmonic
      lmax : Integer, maximal angular momentum
    Result:
      1-d numpy array of float64 elements with all spherical harmonics stored in order 0,0; 1,-1; 1,0; 1,+1 ... lmax,lmax, althogether 0 : (lmax+1)**2 elements.
  """  
  assert rvs.shape[0]==3
  r_cp = np.require(rvs,  dtype=np.float64, requirements='C')
  nc = rvs[0,...].size
  res = np.require( np.zeros(((lmax+1)**2,nc)), dtype=np.float64, requirements='CW')
  libnao.rsphar_exp_vec(r_cp.ctypes.data_as(POINTER(c_double)), c_int64(nc), c_int64(lmax), res.ctypes.data_as(POINTER(c_double)))
  
  #for irv,rvec in enumerate(rvs): rsphar(rvec,lmax,res[irv,:])
  return res 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:m_rsphar_libnao.py

示例9: init_libnao_orbs

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def init_libnao_orbs(self):
    """ Initialization of data on libnao site """
    from pyscf.nao.m_libnao import libnao
    from pyscf.nao.m_sv_chain_data import sv_chain_data
    from ctypes import POINTER, c_double, c_int64, c_int32, byref
    data = sv_chain_data(self)
    size_x = np.array([1,self.nspin,self.norbs,self.norbs,1], dtype=np.int32)
    libnao.init_sv_libnao_orbs.argtypes = (POINTER(c_double), POINTER(c_int64), POINTER(c_int32))
    libnao.init_sv_libnao_orbs(data.ctypes.data_as(POINTER(c_double)), c_int64(len(data)), size_x.ctypes.data_as(POINTER(c_int32)))
    self.init_sv_libnao_orbs = True

    libnao.init_aos_libnao.argtypes = (POINTER(c_int64), POINTER(c_int64))
    info = c_int64(-999)
    libnao.init_aos_libnao(c_int64(self.norbs), byref(info))
    if info.value!=0: raise RuntimeError("info!=0")
    return self 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:nao.py

示例10: comp_induce_potential

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def comp_induce_potential(self):
        """
            Compute the induce potential corresponding to the density change
            calculated in get_spatial_density
        """

        from scipy.signal import convolve

        Nx, Ny, Nz = self.mesh[0].size, self.mesh[1].size, self.mesh[2].size

        grid = np.zeros((Nx, Ny, Nz), dtype = np.float64)
        factor = self.dr[0]*self.dr[1]*self.dr[2]/(np.sqrt(2*np.pi)**3)

        libnao.comp_spatial_grid_pot(
            self.dr.ctypes.data_as(POINTER(c_double)), 
            self.mesh[0].ctypes.data_as(POINTER(c_double)),
            self.mesh[1].ctypes.data_as(POINTER(c_double)),
            self.mesh[2].ctypes.data_as(POINTER(c_double)),
            grid.ctypes.data_as(POINTER(c_double)),
            c_int(Nx), c_int(Ny), c_int(Nz))

        return convolve(grid, self.dn_spatial, mode="same", method="fft")*factor 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:24,代碼來源:m_comp_spatial_distributions.py

示例11: spmv_wrapper

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def spmv_wrapper(n, alpha, ap, x, beta = 0.0, incx = 1, incy = 1, lower=0):
  """ Small blas wrapper that is missing in scipy.linalg.blas in scipy.version<=1 """

  if ap.size != n*(n+1)//2:
    raise ValueError("simple wrapper, you MUST provide x.size = n, ap.size = n*(n+1)/2")
    
  if ap.dtype == np.float32:
    y = np.zeros((n), dtype=np.float32)
    libsparsetools.SSPMV_wrapper(c_int(lower), c_int(n), c_float(alpha),
                ap.ctypes.data_as(POINTER(c_float)),
                x.ctypes.data_as(POINTER(c_float)), c_int(incx), c_float(beta),
                y.ctypes.data_as(POINTER(c_float)), c_int(incy))
  elif ap.dtype == np.float64:
    y = np.zeros((n), dtype=np.float64)
    libsparsetools.DSPMV_wrapper(c_int(lower), c_int(n), c_double(alpha),
                ap.ctypes.data_as(POINTER(c_double)),
                x.ctypes.data_as(POINTER(c_double)), c_int(incx), c_double(beta),
                y.ctypes.data_as(POINTER(c_double)), c_int(incy))
  else:
    raise ValueError("dtype error, only np.float32 and np.float64 implemented")

  return y 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:24,代碼來源:m_blas_wrapper.py

示例12: dens_libnao

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def dens_libnao(crds, nspin):
  """  Compute the electronic density using library call """
  assert crds.ndim==2  
  assert crds.shape[-1]==3
  
  nc = crds.shape[0]
  crds_cp = require(crds, dtype=c_double, requirements='C')
  dens = require( zeros((nc, nspin)), dtype=c_double, requirements='CW')

  libnao.dens_libnao(
    crds_cp.ctypes.data_as(POINTER(c_double)),
    c_int64(nc),
    dens.ctypes.data_as(POINTER(c_double)),
    c_int64(nspin))

  return dens 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:m_dens_libnao.py

示例13: init_prod_basis_pp

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def init_prod_basis_pp(self, sv, **kvargs):
    """ Talman's procedure should be working well with Pseudo-Potential starting point."""
    from pyscf.nao.m_prod_biloc import prod_biloc_c

    #t1 = timer()    
    self.init_inp_param_prod_log_dp(sv, **kvargs)
    data = self.chain_data()
    libnao.init_vrtx_cc_apair(data.ctypes.data_as(POINTER(c_double)), c_int64(len(data)))
    self.sv_pbloc_data = True
    
    #t2 = timer(); print(t2-t1); t1=timer();
    self.bp2info = [] # going to be some information including indices of atoms, list of contributing centres, conversion coefficients
    for ia1 in range(sv.natoms):
      rc1 = sv.ao_log.sp2rcut[sv.atom2sp[ia1]]
      for ia2 in range(ia1+1,sv.natoms):
        rc2,dist = sv.ao_log.sp2rcut[sv.atom2sp[ia2]], sqrt(((sv.atom2coord[ia1]-sv.atom2coord[ia2])**2).sum())
        if dist>rc1+rc2 : continue
        pbiloc = self.comp_apair_pp_libint(ia1,ia2)
        if pbiloc is not None : self.bp2info.append(pbiloc)
    
    self.dpc2s,self.dpc2t,self.dpc2sp = self.init_c2s_domiprod() # dominant product's counting
    self.npdp = self.dpc2s[-1]
    self.norbs = self.sv.norbs
    return self 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:26,代碼來源:m_prod_basis_obsolete.py

示例14: thrj_nobuf

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def thrj_nobuf(l1,l2,l3,m1,m2,m3):
  """ Wigner3j symbol without buffer. Written by James Talman. """
  from pyscf.nao.m_libnao import libnao
  from ctypes import POINTER, c_double, c_int, byref

  libnao.thrj_subr.argtypes = (
    POINTER(c_int),  # l1
    POINTER(c_int),  # l2
    POINTER(c_int),  # l3
    POINTER(c_int),  # m1
    POINTER(c_int),  # m2
    POINTER(c_int),  # m3 
   POINTER(c_double))  # thrj

  aa = c_double()
  libnao.thrj_subr( c_int(l1),c_int(l2),c_int(l3),c_int(m1),c_int(m2),c_int(m3), byref(aa)) # call library function
  return aa.value 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:m_thrj.py

示例15: comp_vext_tem

# 需要導入模塊: import ctypes [as 別名]
# 或者: from ctypes import c_double [as 別名]
def comp_vext_tem(self, ao_log=None, numba_parallel=True):
    """
        Compute the external potential created by a moving charge
        using the fortran routine
    """

    Vfreq_real = np.zeros((self.freq.size, self.nprod), dtype=np.float64)
    Vfreq_imag = np.zeros((self.freq.size, self.nprod), dtype=np.float64)
    ub = find_nearrest_index(self.freq_symm, self.freq[0])

    libnao.comp_vext_tem(self.time.ctypes.data_as(POINTER(c_double)),
                        self.freq_symm.ctypes.data_as(POINTER(c_double)),
                        c_int(self.time.size), c_int(self.freq.size), 
                        c_int(ub), c_int(self.nprod), 
                        c_double(self.vnorm),
                        self.vdir.ctypes.data_as(POINTER(c_double)),
                        self.beam_offset.ctypes.data_as(POINTER(c_double)),
                        Vfreq_real.ctypes.data_as(POINTER(c_double)),
                        Vfreq_imag.ctypes.data_as(POINTER(c_double)),
                        )

    return Vfreq_real + 1.0j*Vfreq_imag 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:24,代碼來源:m_comp_vext_tem.py


注:本文中的ctypes.c_double方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。