本文整理匯總了Python中csv.field_size_limit方法的典型用法代碼示例。如果您正苦於以下問題:Python csv.field_size_limit方法的具體用法?Python csv.field_size_limit怎麽用?Python csv.field_size_limit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類csv
的用法示例。
在下文中一共展示了csv.field_size_limit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Records
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def Records(self):
"""Reads the CSV data file and generates row records.
Yields:
Lists of strings
Raises:
ResumeError: If the progress database and data file indicate a different
number of rows.
"""
csv_file = self.openfile(self.csv_filename, 'rb')
reader = self.create_csv_reader(csv_file, skipinitialspace=True)
try:
for record in reader:
yield record
except csv.Error, e:
if e.args and e.args[0].startswith('field larger than field limit'):
raise FieldSizeLimitError(csv.field_size_limit())
else:
raise
示例2: test_read_bigfield
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def test_read_bigfield(self):
# This exercises the buffer realloc functionality and field size
# limits.
limit = csv.field_size_limit()
try:
size = 50000
bigstring = 'X' * size
bigline = '%s,%s' % (bigstring, bigstring)
self._read_test([bigline], [[bigstring, bigstring]])
csv.field_size_limit(size)
self._read_test([bigline], [[bigstring, bigstring]])
self.assertEqual(csv.field_size_limit(), size)
csv.field_size_limit(size-1)
self.assertRaises(csv.Error, self._read_test, [bigline], [])
self.assertRaises(TypeError, csv.field_size_limit, None)
self.assertRaises(TypeError, csv.field_size_limit, 1, None)
finally:
csv.field_size_limit(limit)
示例3: index
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def index(sqlite_filename, tsv_filename):
logger.info('Reading tsv file %s', tsv_filename)
# https://stackoverflow.com/questions/15063936/csv-error-field-larger-than-field-limit-131072
# https://github.com/balta2ar/brotab/issues/25
# It should work on Python 3 and Python 2, on any CPU / OS.
csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2))
with open(tsv_filename, encoding='utf-8') as tsv_file:
lines = [tuple(line) for line in csv.reader(tsv_file, delimiter='\t',
quoting=csv.QUOTE_NONE)]
logger.info(
'Creating sqlite DB filename %s from tsv %s (%s lines)',
sqlite_filename, tsv_filename, len(lines))
conn = sqlite3.connect(sqlite_filename)
cursor = conn.cursor()
with suppress(sqlite3.OperationalError):
cursor.execute('drop table tabs;')
cursor.execute(
'create virtual table tabs using fts5('
' tab_id, title, url, body, tokenize="porter unicode61");')
cursor.executemany('insert into tabs values (?, ?, ?, ?)', lines)
conn.commit()
conn.close()
示例4: load_lookup_file_from_disk
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def load_lookup_file_from_disk(file_path):
"""
parse the lookup file from the given path and return the result
Args:
file_path (string): the path to the lookup file
Returns:
lookup_data (dict): result from the csv parser
"""
if not file_exists(file_path):
raise RuntimeError('Not valid filepath: {}'.format(file_path))
try:
with open(file_path, mode='r') as f:
reader = csv.DictReader(f)
csv.field_size_limit(CSV_FILESIZE_LIMIT)
lookup_data = reader.next()
except Exception as e:
raise RuntimeError('Error reading model file: %s, %s' % (file_path, str(e)))
return lookup_data
示例5: _load_sentence_file
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def _load_sentence_file(self, filename):
csv.field_size_limit(sys.maxsize)
opener = gzip.open if filename.endswith('.gz') else open
entities = dict()
with opener(filename) as csvfile:
reader = csv.reader(csvfile, delimiter='\t',quoting=csv.QUOTE_NONE)
for row in reader:
qid = row[0].strip()
sentence_json = row[1].strip()
if sentence_json:
payload = json.loads(sentence_json)
annotations = payload['annotations']
sentence_entities = [ x['id'] for x in annotations]
sentence_entities = [ str(x) for x in sentence_entities]
entities[qid] = sentence_entities
else:
entities[qid] = []
return entities
示例6: init
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def init(args):
"""
Load data, build model, create optimizer, create vars to hold metrics, etc.
"""
#need to handle really large text fields
csv.field_size_limit(sys.maxsize)
#load vocab and other lookups
desc_embed = args.lmbda > 0
print("loading lookups...")
dicts = datasets.load_lookups(args, desc_embed=desc_embed)
model = tools.pick_model(args, dicts)
print(model)
if not args.test_model:
optimizer = optim.Adam(model.parameters(), weight_decay=args.weight_decay, lr=args.lr)
else:
optimizer = None
params = tools.make_param_dict(args)
return args, model, optimizer, params, dicts
示例7: read_file
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def read_file(data_dir, with_evaluation):
data = []
target = []
with open(join(data_dir, 'dataset.csv'), 'rt', encoding='utf-8') as csvfile:
csv.field_size_limit(500 * 1024 * 1024)
reader = csv.reader(csvfile)
for row in reader:
if data_dir == './agnews':
doc = row[1] + '. ' + row[2]
data.append(doc)
target.append(int(row[0]) - 1)
elif data_dir == './yelp':
data.append(row[1])
target.append(int(row[0]) - 1)
if with_evaluation:
y = np.asarray(target)
assert len(data) == len(y)
assert set(range(len(np.unique(y)))) == set(np.unique(y))
else:
y = None
return data, y
示例8: _increase_csv_field_max_size
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def _increase_csv_field_max_size():
"""Makes document entry in dataset as big as possible
References
----------
https://stackoverflow.com/questions/15063936/csv-error-field-larger-than-field-limit-131072
"""
max_int = sys.maxsize
while True:
try:
csv.field_size_limit(max_int)
break
except OverflowError:
max_int = int(max_int / 10)
示例9: unicode_csv_reader
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def unicode_csv_reader(unicode_csv_data: TextIOWrapper, **kwargs: Any) -> Any:
r"""Since the standard csv library does not handle unicode in Python 2, we need a wrapper.
Borrowed and slightly modified from the Python docs:
https://docs.python.org/2/library/csv.html#csv-examples
Args:
unicode_csv_data (TextIOWrapper): unicode csv data (see example below)
Examples:
>>> from torchaudio.datasets.utils import unicode_csv_reader
>>> import io
>>> with io.open(data_path, encoding="utf8") as f:
>>> reader = unicode_csv_reader(f)
"""
# Fix field larger than field limit error
maxInt = sys.maxsize
while True:
# decrease the maxInt value by factor 10
# as long as the OverflowError occurs.
try:
csv.field_size_limit(maxInt)
break
except OverflowError:
maxInt = int(maxInt / 10)
csv.field_size_limit(maxInt)
for line in csv.reader(unicode_csv_data, **kwargs):
yield line
示例10: __init__
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def __init__(self, sf):
# Set csv max reading size to the platform's max size available.
csv.field_size_limit(sys.maxsize)
self.sf = sf
示例11: ContentGenerator
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def ContentGenerator(csv_file,
batch_size,
create_csv_reader=csv.reader,
create_csv_writer=csv.writer):
"""Retrieves CSV data up to a batch size at a time.
Args:
csv_file: A file-like object for reading CSV data.
batch_size: Maximum number of CSV rows to yield on each iteration.
create_csv_reader, create_csv_writer: Used for dependency injection.
Yields:
Tuple (entity_count, csv_content) where:
entity_count: Number of entities contained in the csv_content. Will be
less than or equal to the batch_size and greater than 0.
csv_content: String containing the CSV content containing the next
entity_count entities.
"""
try:
csv.field_size_limit(800000)
except AttributeError:
pass
reader = create_csv_reader(csv_file, skipinitialspace=True)
exhausted = False
while not exhausted:
rows_written = 0
content = StringIO.StringIO()
writer = create_csv_writer(content)
try:
for i in xrange(batch_size):
row = reader.next()
writer.writerow(row)
rows_written += 1
except StopIteration:
exhausted = True
if rows_written > 0:
yield rows_written, content.getvalue()
示例12: __init__
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def __init__(self, limit):
self.message = """
A field in your CSV input file has exceeded the current limit of %d.
You can raise this limit by adding the following lines to your config file:
import csv
csv.field_size_limit(new_limit)
where new_limit is number larger than the size in bytes of the largest
field in your CSV.
""" % limit
Error.__init__(self, self.message)
示例13: __init__
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def __init__(self, istream: TextIO, sep: str = ',') -> None:
# bump the built-in limits on field sizes
csv.field_size_limit(2**24)
self.reader = csv.DictReader(istream, delimiter=sep)
示例14: start
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def start(self):
csv.field_size_limit(sys.maxsize)
self.parser = create_parser(name=self.lang, lemmas=True)
示例15: generate_dictionary_BA
# 需要導入模塊: import csv [as 別名]
# 或者: from csv import field_size_limit [as 別名]
def generate_dictionary_BA(path, files, attributes_list):
# path = '../Minnemudac/'
# files = ['Coborn_history_order.csv','Coborn_future_order.csv']
# files = ['BA_history_order.csv', 'BA_future_order.csv']
# attributes_list = ['MATERIAL_NUMBER']
dictionary_table = {}
counter_table = {}
for attr in attributes_list:
dictionary = {}
dictionary_table[attr] = dictionary
counter_table[attr] = 0
csv.field_size_limit(sys.maxsize)
for filename in files:
count = 0
with open(path + filename, 'r') as csvfile:
reader = csv.reader(csvfile, delimiter=',', quotechar='|')
for row in reader:
if count == 0:
count += 1
continue
key = attributes_list[0]
if row[2] not in dictionary_table[key]:
dictionary_table[key][row[2]] = counter_table[key]
counter_table[key] = counter_table[key] + 1
count += 1
print(counter_table)
total = 0
for key in counter_table.keys():
total = total + counter_table[key]
print('# dimensions of final vector: ' + str(total) + ' | ' + str(count - 1))
return dictionary_table, total, counter_table