當前位置: 首頁>>代碼示例>>Python>>正文


Python corpus.Corpus方法代碼示例

本文整理匯總了Python中corpus.Corpus方法的典型用法代碼示例。如果您正苦於以下問題:Python corpus.Corpus方法的具體用法?Python corpus.Corpus怎麽用?Python corpus.Corpus使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在corpus的用法示例。


在下文中一共展示了corpus.Corpus方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: params

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def params(self): 
		"""Waits for parameters to come down the line and returns them. May block on the client."""
		line = sys.stdin.readline().strip()
		while line:
			line = codecs.decode(line, "utf8")

			if line:
				input_line = line
				input_json = json.loads(line)

				if "command" in input_json:
					if input_json["command"] == "BEGIN_EXECUTION":
						corpus = Corpus(input_json)
						self.scriptParams = input_json["parameterMap"]
						return self.scriptParams
					elif input_json["command"] == "ABORT_EXECUTION":
						return
					elif input_json["command"] == "END_EXECUTION":
						return
			line = sys.stdin.readline().strip() 
開發者ID:GateNLP,項目名稱:gateplugin-python,代碼行數:22,代碼來源:iterator.py

示例2: load_ibm

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def load_ibm():
    """ Load the train and dev datasets """
    IBM_PATH = '/home/mgimenez/Dev/corpora/Quora/IBM'
    TRAIN_PATH = join(IBM_PATH, 'train.tsv')
    train = Corpus('ibm', TRAIN_PATH)
    DEV_PATH = join(IBM_PATH, 'dev.tsv')
    dev = Corpus('ibm', DEV_PATH)
    TEST_PATH = join(IBM_PATH, 'test.tsv')
    test = Corpus('ibm', TEST_PATH)

    vocab_processor, seq_len = build_vocabulary(train.sim_data,
                                                train.non_sim_data)
    train.to_index(vocab_processor)
    dev.to_index(vocab_processor)
    test.to_index(vocab_processor)

    return train.non_sim_data, train.sim_data, \
           dev.non_sim_data, dev.sim_data, \
           test.sim_data, test.non_sim_data, \
           vocab_processor, seq_len 
開發者ID:maigimenez,項目名稱:jon-siamese,代碼行數:22,代碼來源:experiment.py

示例3: fit

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def fit(self, corpus, valid_split=0.0, algorithm='GS', n_iter=1000, verbose=True):
        """

        :param corpus:
        corpus.Corpus()

        :param valid_split:

        :param n_iter:

        :param algorithm:
        'GS'    ->  Gibbs sampling
        'VI'    ->  Variational Inference

        :param verbose:
        True: print log information

        :return: LDA
        """
        assert isinstance(corpus, Corpus), 'Input should be Corpus type'

        self.valid_split = valid_split
        V = self.V = corpus.V
        M = int(corpus.M * (1 - valid_split))
        if algorithm == 'GS':
            self._fit_GS(corpus.docs[: M], V, n_iter, verbose)
        elif algorithm == 'VI':
            pass
        else:
            raise ValueError("algorithm must be either 'GS' or 'VI'")
        return self 
開發者ID:helloworld0909,項目名稱:lda,代碼行數:33,代碼來源:lda.py

示例4: start

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def start(self):
		line = sys.stdin.readline().strip()
		while line:
			line = codecs.decode(line, "utf8")

			if line:
				self.input_line = line
				input_json = json.loads(line)

				if "command" in input_json:
					if input_json["command"] == "BEGIN_EXECUTION":
						self.corpus = Corpus(input_json)
						self.scriptParams = input_json["parameterMap"]

						self.init(**fill_params(self.scriptParams, self.init))
						self.beginExecution()

					elif input_json["command"] == "ABORT_EXECUTION":
						self.abortExecution()
						return
					elif input_json["command"] == "END_EXECUTION":
						self.endExecution()
						return
				else:
					self.document = Document.load(input_json)
					self.inputAS = self.document.annotationSets[self.scriptParams.get("inputAS", None)]
					self.outputAS = self.document.annotationSets[self.scriptParams.get("outputAS", None)]

					self.execute(self.document, **fill_params(self.scriptParams, self.execute))

					print json.dumps(self.document.logger)
					sys.stdout.flush()

			line = sys.stdin.readline().strip() 
開發者ID:GateNLP,項目名稱:gateplugin-python,代碼行數:36,代碼來源:processing_resource.py

示例5: __iter__

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def __iter__(self):
		line = sys.stdin.readline().strip()
		while line:
			line = codecs.decode(line, "utf8")

			if line:
				input_line = line
				input_json = json.loads(line)
				if "command" in input_json:
					if input_json["command"] == "BEGIN_EXECUTION":
						corpus = Corpus(input_json)
						self.scriptParams = input_json["parameterMap"]
					elif input_json["command"] == "ABORT_EXECUTION":
						return
					elif input_json["command"] == "END_EXECUTION":
						return
				else:
					try:
						document = Document.load(input_json)

						yield document
						print json.dumps(document.logger)
					except InvalidOffsetException as e:
						print >> sys.stderr, "InvalidOffsetException prevented reading a document " + e.message
						print json.dumps([])
					sys.stdout.flush()

			line = sys.stdin.readline().strip() 
開發者ID:GateNLP,項目名稱:gateplugin-python,代碼行數:30,代碼來源:iterator.py

示例6: load_quora

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def load_quora():
    QUORA_PATH = '/home/mgimenez/Dev/corpora/Quora/quora_duplicate_questions.tsv'
    dataset = Corpus('quora', QUORA_PATH)

    train_non_sim, train_sim, dev_non_sim, dev_sim, \
    test_non_sim, test_sim, \
    vocab_processor, seq_len = dataset.make_partitions_quora()

    return train_non_sim, train_sim, dev_non_sim, dev_sim, \
           test_non_sim, test_sim, vocab_processor, seq_len 
開發者ID:maigimenez,項目名稱:jon-siamese,代碼行數:12,代碼來源:experiment.py

示例7: train

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def train(self, dot_path):
        print("Begin train...")
        corpus = Corpus()
        corpus_data = corpus.load_corpus(dot_path)
        for data in corpus_data:
            for conversation in data: # conversation??????
                statement_history = []
                for text in conversation: # ???????????
                    if statement_history:
                        self.storage.add(statement_history[-1], text.encode('utf-8'));
                    statement_history.append(text.encode('utf-8')) # ??????????
        print("End of train!") 
開發者ID:Qiware,項目名稱:aibot,代碼行數:14,代碼來源:chatbot.py

示例8: main

# 需要導入模塊: import corpus [as 別名]
# 或者: from corpus import Corpus [as 別名]
def main():

	QAfile 	   		= sys.argv[1]
	ReviewFile 		= sys.argv[2]
	minReview  		= int(sys.argv[3])
	k		   	= int(sys.argv[4])
	numiter	   		= int(sys.argv[5])
	Lambda			= float(sys.argv[6])
	predictionsOut 		= sys.argv[7]
	rankingOut 		= sys.argv[8]
	
	corpus = Corpus(QAfile, ReviewFile, minReview)
	
	corpus.construct_QAnswersAndQPerItem()
	corpus.construct_SentencesAndSPerItem()
	corpus.Calculate_PairWiseFeature()

	print "Vocabulary Size: " + str(corpus.Map.V)
	print "Number of Questions: " + str(len(corpus.QAnswers))
	print "Number of Reviews: " + str(len(corpus.Sentences))
	print "Number of Items " + str(len(corpus.Map.ItemIDMap))
	print "Avg review length " + str(sum(corpus.Avgdl.values())/len(corpus.Avgdl))

	model	  	= Model(k, numiter, Lambda, corpus)
	
	sess = model.train_model()
			
	print "\nModel is trained and optimal model loaded!\n"
							
	valid_accuracy, test_accuracy, topRanked 	= model.valid_test_perf(sess)
	
	if (predictionsOut):
		model.save_predictions(topRanked, predictionsOut)
		
	if (rankingOut):
		topRanked = model.top_ranked(sess, 10)
		model.save_top_ranked(topRanked, rankingOut)

	print "Predictions are saved\n"

	valid_AUC, test_AUC	= model.AUC(sess)

	print "-----------------------------------------------"
	print "----------------------------------------------\n"
	print "Accuracy: "
	print "\tValidation: "+str(valid_accuracy)
	print "\tTest: "+str(test_accuracy)
	print "\n"
	print "AUC: "
	print "\tValidation: "+str(valid_AUC)
	print "\tTest: "+str(test_AUC)
	print "\n"
	print "-----------------------------------------------"
	print "----------------------------------------------\n" 
開發者ID:pprakhar30,項目名稱:MOQA,代碼行數:56,代碼來源:main.py


注:本文中的corpus.Corpus方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。