本文整理匯總了Python中coremltools.proto方法的典型用法代碼示例。如果您正苦於以下問題:Python coremltools.proto方法的具體用法?Python coremltools.proto怎麽用?Python coremltools.proto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類coremltools
的用法示例。
在下文中一共展示了coremltools.proto方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import proto [as 別名]
def __init__(self, model):
from coremltools.proto import Model_pb2
# sanity check.
if not isinstance(model, Model_pb2.Model):
raise TypeError("Coreml layer of type %s is not supported." % type(model))
super(CoremlGraph, self).__init__(model)
self.model = model
示例2: convert_multiarray_output_to_image
# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import proto [as 別名]
def convert_multiarray_output_to_image(spec, feature_name, is_bgr=False):
"""
Convert an output multiarray to be represented as an image
This will modify the Model_pb spec passed in.
Example:
model = coremltools.models.MLModel('MyNeuralNetwork.mlmodel')
spec = model.get_spec()
convert_multiarray_output_to_image(spec,'imageOutput',is_bgr=False)
newModel = coremltools.models.MLModel(spec)
newModel.save('MyNeuralNetworkWithImageOutput.mlmodel')
Parameters
----------
spec: Model_pb
The specification containing the output feature to convert
feature_name: str
The name of the multiarray output feature you want to convert
is_bgr: boolean
If multiarray has 3 channels, set to True for RGB pixel order or false for BGR
"""
for output in spec.description.output:
if output.name != feature_name:
continue
if output.type.WhichOneof('Type') != 'multiArrayType':
raise ValueError("%s is not a multiarray type" % output.name)
array_shape = tuple(output.type.multiArrayType.shape)
channels, height, width = array_shape
from coremltools.proto import FeatureTypes_pb2 as ft
if channels == 1:
output.type.imageType.colorSpace = ft.ImageFeatureType.ColorSpace.Value('GRAYSCALE')
elif channels == 3:
if is_bgr:
output.type.imageType.colorSpace = ft.ImageFeatureType.ColorSpace.Value('BGR')
else:
output.type.imageType.colorSpace = ft.ImageFeatureType.ColorSpace.Value('RGB')
else:
raise ValueError("Channel Value %d not supported for image inputs" % channels)
output.type.imageType.width = width
output.type.imageType.height = height
示例3: _convert_k_neighbors_classifier
# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import proto [as 別名]
def _convert_k_neighbors_classifier(model, input_name, output_name):
"""Convert the scikit KNeighborsClassifier to CoreML. Assumes initial validation of the scikit model has been done."""
spec = coremltools.proto.Model_pb2.Model()
spec.specificationVersion = coremltools.SPECIFICATION_VERSION
spec.kNearestNeighborsClassifier.numberOfNeighbors.defaultValue = model.n_neighbors
spec.kNearestNeighborsClassifier.numberOfNeighbors.range.minValue = 1
spec.kNearestNeighborsClassifier.numberOfNeighbors.range.maxValue = _number_of_samples(
model, spec
) # is there a better heuristic to use here?
number_of_dimensions = 0
if _is_algorithm_brute(model):
number_of_dimensions = model._fit_X.shape[1]
spec.kNearestNeighborsClassifier.nearestNeighborsIndex.linearIndex.MergeFromString(
b""
)
elif _is_algorithm_kd_tree(model):
npdata = np.asarray(model._tree.data)
number_of_dimensions = get_input_dimension(model)
spec.kNearestNeighborsClassifier.nearestNeighborsIndex.singleKdTreeIndex.leafSize = (
model.leaf_size
)
else:
raise TypeError(
"KNeighbors algorithm not supported for CoreML conversion: {}".format(
model.algorithm
)
)
spec.kNearestNeighborsClassifier.nearestNeighborsIndex.numberOfDimensions = (
number_of_dimensions
)
# Make sure the distance function is set
spec.kNearestNeighborsClassifier.nearestNeighborsIndex.squaredEuclideanDistance.MergeFromString(
b""
)
input_features = spec.description.input.add()
input_features.name = input_name[0][0]
input_features.type.multiArrayType.shape.extend([number_of_dimensions])
input_features.type.multiArrayType.dataType = (
FeatureTypes_pb2.ArrayFeatureType.FLOAT32
)
output_label = spec.description.output.add()
output_label.name = output_name[0][0]
# predictedFeatureName is required since KNN is a classifier and it should be same as outputName.
spec.description.predictedFeatureName = output_label.name
# Need to confirm if scikit only accepts integer labels
output_label.type.int64Type.MergeFromString(b"")
spec.kNearestNeighborsClassifier.uniformWeighting.MergeFromString(b"")
_extract_training_data(model, spec)
return spec