當前位置: 首頁>>代碼示例>>Python>>正文


Python coremltools.models方法代碼示例

本文整理匯總了Python中coremltools.models方法的典型用法代碼示例。如果您正苦於以下問題:Python coremltools.models方法的具體用法?Python coremltools.models怎麽用?Python coremltools.models使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在coremltools的用法示例。


在下文中一共展示了coremltools.models方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_top_level

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_top_level(self):
        expected = [
            "ClassifierConfig",
            "EnumeratedShapes",
            "ImageType",
            "RangeDim",
            "SPECIFICATION_VERSION",
            "Shape",
            "TensorType",
            "convert",
            "converters",
            "models",
            "proto",
            "target",
            "utils",
            "version",
        ]
        _check_visible_modules(_get_visible_items(ct), expected) 
開發者ID:apple,項目名稱:coremltools,代碼行數:20,代碼來源:test_api_visibilities.py

示例2: test_models_neural_network

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_neural_network(self):
        expected = [
            "AdamParams",
            "NeuralNetworkBuilder",
            "SgdParams",
            "builder",
            "datatypes",
            "flexible_shape_utils",
            "optimization_utils",
            "printer",
            "quantization_utils",
            "set_training_features",
            "set_transform_interface_params",
            "spec_inspection_utils",
            "update_optimizer_utils",
            "utils",
        ]
        _check_visible_modules(_get_visible_items(ct.models.neural_network), expected) 
開發者ID:apple,項目名稱:coremltools,代碼行數:20,代碼來源:test_api_visibilities.py

示例3: test_models_neural_network_quantization_utils

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_neural_network_quantization_utils(self):
        expected = [
            "AdvancedQuantizedLayerSelector",
            "MatrixMultiplyLayerSelector",
            "ModelMetrics",
            "NoiseMetrics",
            "OutputMetric",
            "QuantizedLayerSelector",
            "TopKMetrics",
            "activate_int8_int8_matrix_multiplications",
            "compare_models",
            "quantize_weights",
        ]
        _check_visible_modules(
            _get_visible_items(ct.models.neural_network.quantization_utils), expected
        ) 
開發者ID:apple,項目名稱:coremltools,代碼行數:18,代碼來源:test_api_visibilities.py

示例4: test_models_neural_network_flexible_shape_utils

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_neural_network_flexible_shape_utils(self):
        expected = [
            "NeuralNetworkImageSize",
            "NeuralNetworkImageSizeRange",
            "NeuralNetworkMultiArrayShape",
            "NeuralNetworkMultiArrayShapeRange",
            "Shape",
            "ShapeRange",
            "Size",
            "add_enumerated_image_sizes",
            "add_enumerated_multiarray_shapes",
            "add_multiarray_ndshape_enumeration",
            "set_multiarray_ndshape_range",
            "update_image_size_range",
            "update_multiarray_shape_range",
        ]
        _check_visible_modules(
            _get_visible_items(ct.models.neural_network.flexible_shape_utils), expected
        ) 
開發者ID:apple,項目名稱:coremltools,代碼行數:21,代碼來源:test_api_visibilities.py

示例5: _run_quantized_test

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def _run_quantized_test(self, input_, full_precision_model, quantized_model, delta):
        # Output from both models should be the same
        full_output = full_precision_model.predict(input_)
        quantized_output = quantized_model.predict(input_)
        self.assertEqual(full_output.keys(), quantized_output.keys())

        for key in full_output.keys():
            full_output_flatten = full_output[key].flatten()
            quantized_output_flatten = quantized_output[key].flatten()

            self.assertTrue(len(full_output_flatten) == len(quantized_output_flatten))

            norm_factor = np.maximum(full_output_flatten, quantized_output_flatten)
            norm_factor = np.maximum(norm_factor, 1.0)
            f_out = full_output_flatten / norm_factor
            q_out = quantized_output_flatten / norm_factor

            for idx, full_value in enumerate(f_out):
                quantized_value = q_out[idx]
                self.assertAlmostEqual(full_value, quantized_value, delta=delta) 
開發者ID:apple,項目名稱:coremltools,代碼行數:22,代碼來源:test_quantization.py

示例6: test_models

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models(self):
        expected = [
            "MLModel",
            "datatypes",
            "model",
            "neural_network",
            "pipeline",
            "tree_ensemble",
            "utils",
        ]
        _check_visible_modules(_get_visible_items(ct.models), expected) 
開發者ID:apple,項目名稱:coremltools,代碼行數:13,代碼來源:test_api_visibilities.py

示例7: test_models_mlmodel

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_mlmodel(self):
        expected = [
            "author",
            "get_spec",
            "input_description",
            "license",
            "output_description",
            "predict",
            "save",
            "short_description",
            "user_defined_metadata",
            "version",
        ]
        _check_visible_modules(_get_visible_items(ct.models.MLModel), expected) 
開發者ID:apple,項目名稱:coremltools,代碼行數:16,代碼來源:test_api_visibilities.py

示例8: test_models_neural_network_utils

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_neural_network_utils(self):
        expected = ["NeuralNetworkBuilder", "make_image_input", "make_nn_classifier"]
        _check_visible_modules(
            _get_visible_items(ct.models.neural_network.utils), expected
        ) 
開發者ID:apple,項目名稱:coremltools,代碼行數:7,代碼來源:test_api_visibilities.py

示例9: test_models_pipeline

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_pipeline(self):
        expected = [
            "Pipeline",
            "PipelineClassifier",
            "PipelineRegressor",
            "set_classifier_interface_params",
            "set_regressor_interface_params",
            "set_training_features",
            "set_transform_interface_params",
        ]
        _check_visible_modules(_get_visible_items(ct.models.pipeline), expected) 
開發者ID:apple,項目名稱:coremltools,代碼行數:13,代碼來源:test_api_visibilities.py

示例10: test_models_neural_network_update_optimizer_utils

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_neural_network_update_optimizer_utils(self):
        expected = ["AdamParams", "Batch", "RangeParam", "SgdParams"]
        _check_visible_modules(
            _get_visible_items(ct.models.neural_network.update_optimizer_utils),
            expected,
        ) 
開發者ID:apple,項目名稱:coremltools,代碼行數:8,代碼來源:test_api_visibilities.py

示例11: test_models_neural_network_optimization_utils

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_models_neural_network_optimization_utils(self):
        _check_visible_modules(
            _get_visible_items(ct.models.neural_network.optimization_utils), [],
        ) 
開發者ID:apple,項目名稱:coremltools,代碼行數:6,代碼來源:test_api_visibilities.py

示例12: test_simple_loop_fixed_iterations

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def test_simple_loop_fixed_iterations(self):
        input_features = [("data", datatypes.Array(1))]
        output_features = [("output", None)]

        builder_top = NeuralNetworkBuilder(
            input_features, output_features, disable_rank5_shape_mapping=True
        )
        builder_top.add_copy("copy_1", input_name="data", output_name="output")

        loop_layer = builder_top.add_loop("loop_layer")
        loop_layer.loop.maxLoopIterations = 5
        builder_body = NeuralNetworkBuilder(
            input_features=None,
            output_features=None,
            spec=None,
            nn_spec=loop_layer.loop.bodyNetwork,
        )
        builder_body.add_elementwise(
            "add", input_names=["output"], output_name="x", mode="ADD", alpha=2
        )

        builder_body.add_copy("copy_2", input_name="x", output_name="output")
        coremltools.models.utils.save_spec(
            builder_top.spec, "/tmp/simple_loop_fixed_iterations.mlmodel"
        )
        mlmodel = MLModel(builder_top.spec)

        # True branch case
        input_dict = {"data": np.array([0], dtype="float")}
        output_ref = {"output": np.array([10], dtype="float")}
        self._test_model(mlmodel, input_dict, output_ref) 
開發者ID:apple,項目名稱:coremltools,代碼行數:33,代碼來源:test_nn_builder.py

示例13: compare

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def compare(self, specification_modified=True):
        x = np.random.rand(*self.input_shape)

        def _get_preds(spec):
            mlmodel = coremltools.models.MLModel(spec)
            return mlmodel.predict({"data": x}, useCPUOnly=True)["output"]

        preds = _get_preds(self.builder.spec)
        self.assertEqual(self.builder.spec.specificationVersion, 4)

        quantized_spec = activate_int8_int8_matrix_multiplications(
            self.builder.spec, self.selector
        )

        layer = self.builder.spec.neuralNetwork.layers[0]
        layer_type = layer.WhichOneof("layer")
        if layer_type == "innerProduct":
            matmul_layer = layer.innerProduct

        elif layer_type == "batchedMatmul":
            matmul_layer = layer.batchedMatmul
        wp = matmul_layer.weights

        if specification_modified:
            self.assertEqual(self.builder.spec.specificationVersion, 5)
            quant_preds = _get_preds(quantized_spec)
            self._test_predictions(preds, quant_preds, SNR=40)
            self.assertEqual(len(wp.floatValue), 0)
        else:
            self.assertEqual(self.builder.spec.specificationVersion, 4)
            quant_preds = _get_preds(quantized_spec)
            np.testing.assert_array_almost_equal(preds, quant_preds)
            self.assertGreater(len(wp.floatValue), 0) 
開發者ID:apple,項目名稱:coremltools,代碼行數:35,代碼來源:test_quantization.py

示例14: _check_unsupported_layers

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def _check_unsupported_layers(cls, model, supported_layers):
        """Check for any unsupported layers in the keras model.

        Args:
            model - a keras model
            supported_layers - a dictionary of supported layers. Keys are keras
                               layer classes and values are corresponding
                               coreml layer classes.
        """
        for i, layer in enumerate(model.layers):
            if (isinstance(layer, _keras.models.Sequential) or
                    isinstance(layer, _keras.models.Model)):
                cls._check_unsupported_layers(layer)
            else:
                if type(layer) not in supported_layers:
                    print(supported_layers)
                    raise ValueError(
                        "Keras layer '%s' not supported. " % str(type(layer))
                    )
                if isinstance(layer, _keras.layers.wrappers.TimeDistributed):
                    if type(layer.layer) not in supported_layers:
                        raise ValueError(
                            "Keras layer '%s' not supported. " %
                            str(type(layer.layer))
                        )
                if isinstance(layer, _keras.layers.wrappers.Bidirectional):
                    if not isinstance(layer.layer,
                                      _keras.layers.recurrent.LSTM):
                        raise ValueError(
                            'Keras bi-directional wrapper conversion supports '
                            'only LSTM layer at this time. ') 
開發者ID:fritzlabs,項目名稱:fritz-models,代碼行數:33,代碼來源:fritz_coreml_converter.py

示例15: _test_function

# 需要導入模塊: import coremltools [as 別名]
# 或者: from coremltools import models [as 別名]
def _test_function(self, original_framework, parser):
        print("[{}] Testing {} models starts.".format(datetime.now(), original_framework), file=sys.stderr)
        
        ensure_dir(self.cachedir)
        ensure_dir(self.tmpdir)

        for network_name in self.test_table[original_framework].keys():
            print("[{}] Testing {} {} starts.".format(datetime.now(), original_framework, network_name), file=sys.stderr)

            # get test input path
            test_input = self._get_test_input(network_name)

            # get original model prediction result
            original_predict = parser(network_name, test_input)


            IR_file = TestModels.tmpdir + original_framework + '_' + network_name + "_converted"
            for emit in self.test_table[original_framework][network_name]:
                if isinstance(emit, staticmethod):
                    emit = emit.__func__
                target_framework = emit.__name__[:-5]

                if (target_framework == 'coreml'):
                    if not is_coreml_supported():
                        continue

                print('[{}] Converting {} from {} to {} starts.'.format(datetime.now(), network_name, original_framework, target_framework), file=sys.stderr)
                converted_predict = emit(
                    original_framework,
                    network_name,
                    IR_file + ".pb",
                    IR_file + ".npy",
                    test_input)


                self._compare_outputs(
                    original_framework,
                    target_framework,
                    network_name,
                    original_predict,
                    converted_predict,
                    self._need_assert(original_framework, target_framework, network_name, original_predict, converted_predict)
                )
                print('[{}] Converting {} from {} to {} passed.'.format(datetime.now(), network_name, original_framework, target_framework), file=sys.stderr)

            try:
                os.remove(IR_file + ".json")
            except OSError:
                pass

            os.remove(IR_file + ".pb")
            os.remove(IR_file + ".npy")
            print("[{}] Testing {} {} passed.".format(datetime.now(), original_framework, network_name), file=sys.stderr)

        print("[{}] Testing {} models passed.".format(datetime.now(), original_framework), file=sys.stderr) 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:57,代碼來源:conversion_imagenet.py


注:本文中的coremltools.models方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。