當前位置: 首頁>>代碼示例>>Python>>正文


Python inference.get_max_preds方法代碼示例

本文整理匯總了Python中core.inference.get_max_preds方法的典型用法代碼示例。如果您正苦於以下問題:Python inference.get_max_preds方法的具體用法?Python inference.get_max_preds怎麽用?Python inference.get_max_preds使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在core.inference的用法示例。


在下文中一共展示了inference.get_max_preds方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: accuracy

# 需要導入模塊: from core import inference [as 別名]
# 或者: from core.inference import get_max_preds [as 別名]
def accuracy(output, target, hm_type='gaussian', thr=0.5):
    '''
    Calculate accuracy according to PCK,
    but uses ground truth heatmap rather than x,y locations
    First value to be returned is average accuracy across 'idxs',
    followed by individual accuracies
    '''
    idx = list(range(output.shape[1]))
    norm = 1.0
    if hm_type == 'gaussian':
        pred, _ = get_max_preds(output)
        target, _ = get_max_preds(target)
        h = output.shape[2]
        w = output.shape[3]
        norm = np.ones((pred.shape[0], 2)) * np.array([h, w]) / 10
    dists = calc_dists(pred, target, norm)

    acc = np.zeros((len(idx) + 1))
    avg_acc = 0
    cnt = 0

    for i in range(len(idx)):
        acc[i + 1] = dist_acc(dists[idx[i]])
        if acc[i + 1] >= 0:
            avg_acc = avg_acc + acc[i + 1]
            cnt += 1

    avg_acc = avg_acc / cnt if cnt != 0 else 0
    if cnt != 0:
        acc[0] = avg_acc
    return acc, avg_acc, cnt, pred 
開發者ID:facebookresearch,項目名稱:PoseWarper,代碼行數:33,代碼來源:evaluate.py

示例2: accuracy

# 需要導入模塊: from core import inference [as 別名]
# 或者: from core.inference import get_max_preds [as 別名]
def accuracy(output, target, hm_type='gaussian', thr=0.5):
    '''
    Calculate accuracy according to PCK,
    but uses ground truth heatmap rather than x,y locations
    First value to be returned is average accuracy across 'idxs',
    followed by individual accuracies
    '''
    idx = list(range(output.shape[1]))
    norm = 1.0
    if hm_type == 'gaussian':
        pred, _ = get_max_preds(output)
        target, _ = get_max_preds(target)
        h = output.shape[2]
        w = output.shape[3]
        norm = np.ones((pred.shape[0], 2)) * np.array([h, w]) / 10
    dists = calc_dists(pred, target, norm)

    acc = np.zeros((len(idx) + 1))
    avg_acc = 0
    cnt = 0

    for i in range(len(idx)):
        acc[i + 1] = dist_acc(dists[idx[i]])
        if acc[i + 1] >= 0:
            avg_acc = avg_acc + acc[i + 1]
            cnt += 1

    avg_acc = avg_acc / cnt
    if cnt != 0:
        acc[0] = avg_acc
    return acc, avg_acc, cnt, pred 
開發者ID:microsoft,項目名稱:multiview-human-pose-estimation-pytorch,代碼行數:33,代碼來源:evaluate.py

示例3: save_batch_heatmaps

# 需要導入模塊: from core import inference [as 別名]
# 或者: from core.inference import get_max_preds [as 別名]
def save_batch_heatmaps(batch_image, batch_heatmaps, file_name, normalize=True):
    '''
    batch_image: [batch_size, channel, height, width]
    batch_heatmaps: ['batch_size, num_joints, height, width]
    file_name: saved file name
    '''
    if normalize:
        batch_image = batch_image.clone()
        min = float(batch_image.min())
        max = float(batch_image.max())

        batch_image.add_(-min).div_(max - min + 1e-5)

    batch_size = batch_heatmaps.size(0)
    num_joints = batch_heatmaps.size(1)
    heatmap_height = batch_heatmaps.size(2)
    heatmap_width = batch_heatmaps.size(3)

    grid_image = np.zeros(
        (batch_size * heatmap_height, (num_joints + 1) * heatmap_width, 3),
        dtype=np.uint8)

    preds, maxvals = get_max_preds(batch_heatmaps.detach().cpu().numpy())

    for i in range(batch_size):
        image = batch_image[i].mul(255)\
                              .clamp(0, 255)\
                              .byte()\
                              .permute(1, 2, 0)\
                              .cpu().numpy()
        heatmaps = batch_heatmaps[i].mul(255)\
                                    .clamp(0, 255)\
                                    .byte()\
                                    .cpu().numpy()

        resized_image = cv2.resize(image,
                                   (int(heatmap_width), int(heatmap_height)))

        height_begin = heatmap_height * i
        height_end = heatmap_height * (i + 1)
        for j in range(num_joints):
            cv2.circle(resized_image,
                       (int(preds[i][j][0]), int(preds[i][j][1])), 1,
                       [0, 0, 255], 1)
            heatmap = heatmaps[j, :, :]
            colored_heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
            masked_image = colored_heatmap * 0.7 + resized_image * 0.3
            cv2.circle(masked_image, (int(preds[i][j][0]), int(preds[i][j][1])),
                       1, [0, 0, 255], 1)

            width_begin = heatmap_width * (j + 1)
            width_end = heatmap_width * (j + 2)
            grid_image[height_begin:height_end, width_begin:width_end, :] = \
                masked_image
            # grid_image[height_begin:height_end, width_begin:width_end, :] = \
            #     colored_heatmap*0.7 + resized_image*0.3

        grid_image[height_begin:height_end, 0:heatmap_width, :] = resized_image

    cv2.imwrite(file_name, grid_image) 
開發者ID:microsoft,項目名稱:multiview-human-pose-estimation-pytorch,代碼行數:62,代碼來源:vis.py


注:本文中的core.inference.get_max_preds方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。