當前位置: 首頁>>代碼示例>>Python>>正文


Python config.cfg方法代碼示例

本文整理匯總了Python中core.config.cfg方法的典型用法代碼示例。如果您正苦於以下問題:Python config.cfg方法的具體用法?Python config.cfg怎麽用?Python config.cfg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在core.config的用法示例。


在下文中一共展示了config.cfg方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: collect

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def collect(inputs, is_training):
    cfg_key = 'TRAIN' if is_training else 'TEST'
    post_nms_topN = int(cfg[cfg_key].RPN_POST_NMS_TOP_N * cfg.FPN.RPN_COLLECT_SCALE + 0.5)
    k_max = cfg.FPN.RPN_MAX_LEVEL
    k_min = cfg.FPN.RPN_MIN_LEVEL
    num_lvls = k_max - k_min + 1
    roi_inputs = inputs[:num_lvls]
    score_inputs = inputs[num_lvls:]

    # rois are in [[batch_idx, x0, y0, x1, y2], ...] format
    # Combine predictions across all levels and retain the top scoring
    rois = np.concatenate(roi_inputs)
    scores = np.concatenate(score_inputs).squeeze()
    inds = np.argsort(-scores)[:post_nms_topN]
    rois = rois[inds, :]
    return rois 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:18,代碼來源:collect_and_distribute_fpn_rpn_proposals.py

示例2: parse_args

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def parse_args():
    """Parse in command line arguments"""
    parser = argparse.ArgumentParser(description='Test a Fast R-CNN network')
    parser.add_argument(
        '--dataset',
        help='training dataset')
    parser.add_argument(
        '--cfg', dest='cfg_file', required=True,
        help='optional config file')
    parser.add_argument(
        '--result_path',
        help='the path for result file.')
    parser.add_argument(
        '--output_dir',
        help='output directory to save the testing results.')
    parser.add_argument(
        '--set', dest='set_cfgs',
        help='set config keys, will overwrite config in the cfg_file.'
             ' See lib/core/config.py for all options',
        default=[], nargs='*')

    return parser.parse_args() 
開發者ID:ppengtang,項目名稱:pcl.pytorch,代碼行數:24,代碼來源:reeval.py

示例3: __init__

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def __init__(self):
        super().__init__()
        cfg = [[64, 64, 'M'], [128, 128, 'M'], [256, 256, 256, 'M'], [512, 512, 512, 'M'], [512, 512, 512]] # Prune the conv5 max pool
        dim_in = 3
        for i in range(len(cfg)):
            for j in range(len(cfg[i])):
                if cfg[i][j] == 'M':
                    setattr(self, 'pool%d'%(i+1), nn.MaxPool2d(kernel_size=2, stride=2))
                else:
                    setattr(self, 'conv%d_%d'%(i+1,j+1), nn.Conv2d(dim_in, cfg[i][j], kernel_size=3, padding=1))
                    setattr(self, 'relu%d_%d'%(i+1,j+1), nn.ReLU(inplace=True))
                    dim_in = cfg[i][j]
        self.spatial_scale = 1. / 16.
        self.dim_out = dim_in

        self._init_modules() 
開發者ID:ruotianluo,項目名稱:Context-aware-ZSR,代碼行數:18,代碼來源:VGG16.py

示例4: get_roidb

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def get_roidb(dataset_name, ind_range):
    """Get the roidb for the dataset specified in the global cfg. Optionally
    restrict it to a range of indices if ind_range is a pair of integers.
    """
    dataset = JsonDataset(dataset_name)
    roidb = dataset.get_roidb(gt=cfg.TEST.USE_GT_PROPOSALS)

    if ind_range is not None:
        total_num_images = len(roidb)
        start, end = ind_range
        roidb = roidb[start:end]
    else:
        start = 0
        end = len(roidb)
        total_num_images = end

    return roidb, start, end, total_num_images 
開發者ID:ruotianluo,項目名稱:Context-aware-ZSR,代碼行數:19,代碼來源:rpn_generator.py

示例5: collect

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def collect(inputs, is_training):
    cfg_key = 'TRAIN' if is_training else 'TEST'
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    k_max = cfg.FPN.RPN_MAX_LEVEL
    k_min = cfg.FPN.RPN_MIN_LEVEL
    num_lvls = k_max - k_min + 1
    roi_inputs = inputs[:num_lvls]
    score_inputs = inputs[num_lvls:]
    if is_training:
        score_inputs = score_inputs[:-2]

    # rois are in [[batch_idx, x0, y0, x1, y2], ...] format
    # Combine predictions across all levels and retain the top scoring
    rois = np.concatenate([blob.data for blob in roi_inputs])
    scores = np.concatenate([blob.data for blob in score_inputs]).squeeze()
    inds = np.argsort(-scores)[:post_nms_topN]
    rois = rois[inds, :]
    return rois 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:20,代碼來源:collect_and_distribute_fpn_rpn_proposals.py

示例6: distribute

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def distribute(rois, label_blobs, outputs, train):
    """To understand the output blob order see return value of
    roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False)
    """
    lvl_min = cfg.FPN.ROI_MIN_LEVEL
    lvl_max = cfg.FPN.ROI_MAX_LEVEL
    lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max)

    outputs[0].reshape(rois.shape)
    outputs[0].data[...] = rois

    # Create new roi blobs for each FPN level
    # (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying
    # to generalize to support this particular case.)
    rois_idx_order = np.empty((0, ))
    for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)):
        idx_lvl = np.where(lvls == lvl)[0]
        blob_roi_level = rois[idx_lvl, :]
        outputs[output_idx + 1].reshape(blob_roi_level.shape)
        outputs[output_idx + 1].data[...] = blob_roi_level
        rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
    rois_idx_restore = np.argsort(rois_idx_order)
    blob_utils.py_op_copy_blob(rois_idx_restore.astype(np.int32), outputs[-1]) 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:25,代碼來源:collect_and_distribute_fpn_rpn_proposals.py

示例7: do_reval

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def do_reval(dataset_name, output_dir, args):
    dataset = JsonDataset(dataset_name)
    with open(os.path.join(output_dir, 'detections.pkl'), 'rb') as f:
        dets = pickle.load(f)
    # Override config with the one saved in the detections file
    if args.cfg_file is not None:
        core.config.merge_cfg_from_cfg(yaml.load(dets['cfg']))
    else:
        core.config._merge_a_into_b(yaml.load(dets['cfg']), cfg)
    results = task_evaluation.evaluate_all(
        dataset,
        dets['all_boxes'],
        dets['all_segms'],
        dets['all_keyps'],
        output_dir,
        use_matlab=args.matlab_eval
    )
    task_evaluation.log_copy_paste_friendly_results(results) 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:20,代碼來源:reval.py

示例8: initialize_model_from_cfg

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def initialize_model_from_cfg():
    """Initialize a model from the global cfg. Loads test-time weights and
    creates the networks in the Caffe2 workspace.
    """
    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    net_utils.initialize_from_weights_file(
        model, cfg.TEST.WEIGHTS, broadcast=False
    )
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)
    workspace.CreateNet(model.conv_body_net)
    if cfg.MODEL.MASK_ON:
        workspace.CreateNet(model.mask_net)
    if cfg.MODEL.KEYPOINTS_ON:
        workspace.CreateNet(model.keypoint_net)
    return model 
開發者ID:lvpengyuan,項目名稱:masktextspotter.caffe2,代碼行數:18,代碼來源:test_engine.py

示例9: get_roidb_and_dataset

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def get_roidb_and_dataset(ind_range):
    """Get the roidb for the dataset specified in the global cfg. Optionally
    restrict it to a range of indices if ind_range is a pair of integers.
    """
    dataset = TextDataSet(cfg.TEST.DATASET)
    if cfg.MODEL.FASTER_RCNN:
        roidb = dataset.get_roidb()
    else:
        roidb = dataset.get_roidb(
            proposal_file=cfg.TEST.PROPOSAL_FILE,
            proposal_limit=cfg.TEST.PROPOSAL_LIMIT
        )

    if ind_range is not None:
        total_num_images = len(roidb)
        start, end = ind_range
        roidb = roidb[start:end]
    else:
        start = 0
        end = len(roidb)
        total_num_images = end

    return roidb, dataset, start, end, total_num_images 
開發者ID:lvpengyuan,項目名稱:masktextspotter.caffe2,代碼行數:25,代碼來源:test_engine.py

示例10: initialize_model_from_cfg

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def initialize_model_from_cfg(args, gpu_id=0):
    """Initialize a model from the global cfg. Loads test-time weights and
    set to evaluation mode.
    """
    model = model_builder_rel.Generalized_RCNN()
    model.eval()

    if args.cuda:
        model.cuda()

    if args.load_ckpt:
        load_name = args.load_ckpt
        logger.info("loading checkpoint %s", load_name)
        checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage)
        net_utils.load_ckpt(model, checkpoint['model'])

    if args.load_detectron:
        logger.info("loading detectron weights %s", args.load_detectron)
        load_detectron_weight(model, args.load_detectron)

    model = mynn.DataParallel(model, cpu_keywords=['im_info', 'roidb'], minibatch=True)

    return model 
開發者ID:jz462,項目名稱:Large-Scale-VRD.pytorch,代碼行數:25,代碼來源:test_engine_rel.py

示例11: collect

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def collect(inputs, is_training):
    cfg_key = 'TRAIN' if is_training else 'TEST'
    post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
    k_max = cfg.FPN.RPN_MAX_LEVEL
    k_min = cfg.FPN.RPN_MIN_LEVEL
    num_lvls = k_max - k_min + 1
    roi_inputs = inputs[:num_lvls]
    score_inputs = inputs[num_lvls:]
    if is_training:
        score_inputs = score_inputs[:-2]

    # rois are in (for each time frame ti)
    # [[batch_idx, x0t0, y0t0, x1t0, y2t0, x0t1, y0t1, x1t1, y2t1], ...] format
    # Combine predictions across all levels and retain the top scoring
    rois = np.concatenate([blob.data for blob in roi_inputs])
    scores = np.concatenate([blob.data for blob in score_inputs]).squeeze()
    inds = np.argsort(-scores)[:post_nms_topN]
    rois = rois[inds, :]
    return rois 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:21,代碼來源:collect_and_distribute_fpn_rpn_proposals.py

示例12: distribute

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def distribute(rois, label_blobs, outputs, train):
    """To understand the output blob order see return value of
    roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False)
    """
    lvl_min = cfg.FPN.ROI_MIN_LEVEL
    lvl_max = cfg.FPN.ROI_MAX_LEVEL
    lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:], lvl_min, lvl_max)

    outputs[0].reshape(rois.shape)
    outputs[0].data[...] = rois

    # Create new roi blobs for each FPN level
    # (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying
    # to generalize to support this particular case.)
    rois_idx_order = np.empty((0, ))
    for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)):
        idx_lvl = np.where(lvls == lvl)[0]
        blob_roi_level = rois[idx_lvl, :]
        outputs[output_idx + 1].reshape(blob_roi_level.shape)
        outputs[output_idx + 1].data[...] = blob_roi_level
        rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
    rois_idx_restore = np.argsort(rois_idx_order)
    blob_utils.py_op_copy_blob(rois_idx_restore.astype(np.int32), outputs[-1]) 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:25,代碼來源:collect_and_distribute_fpn_rpn_proposals.py

示例13: distribute

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def distribute(rois, label_blobs):
    """To understand the output blob order see return value of
    roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False)
    """
    lvl_min = cfg.FPN.ROI_MIN_LEVEL
    lvl_max = cfg.FPN.ROI_MAX_LEVEL
    lvls = fpn_utils.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max)

    # Delete roi entries that have negative area
    # idx_neg = np.where(lvls == -1)[0]
    # rois = np.delete(rois, idx_neg, axis=0)
    # lvls = np.delete(lvls, idx_neg, axis=0)

    output_blob_names = roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False)
    outputs = [None] * len(output_blob_names)
    outputs[0] = rois

    # Create new roi blobs for each FPN level
    # (See: utils.fpn.add_multilevel_roi_blobs which is similar but annoying
    # to generalize to support this particular case.)
    rois_idx_order = np.empty((0, ))
    for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)):
        idx_lvl = np.where(lvls == lvl)[0]
        blob_roi_level = rois[idx_lvl, :]
        outputs[output_idx + 1] = blob_roi_level
        rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
    rois_idx_restore = np.argsort(rois_idx_order)
    outputs[-1] = rois_idx_restore.astype(np.int32)

    return dict(zip(output_blob_names, outputs)) 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:32,代碼來源:collect_and_distribute_fpn_rpn_proposals.py

示例14: parse_args

# 需要導入模塊: from core import config [as 別名]
# 或者: from core.config import cfg [as 別名]
def parse_args():
    """Parse in command line arguments"""
    parser = argparse.ArgumentParser(description='Demonstrate mask-rcnn results')
    parser.add_argument(
        '--dataset', required=True,
        help='training dataset')

    parser.add_argument(
        '--cfg', dest='cfg_file', required=True,
        help='optional config file')
    parser.add_argument(
        '--set', dest='set_cfgs',
        help='set config keys, will overwrite config in the cfg_file',
        default=[], nargs='+')

    parser.add_argument(
        '--no_cuda', dest='cuda', help='whether use CUDA', action='store_false')

    parser.add_argument('--load_ckpt', help='path of checkpoint to load')
    parser.add_argument(
        '--load_detectron', help='path to the detectron weight pickle file')

    parser.add_argument(
        '--image_dir',
        help='directory to load images for demo')
    parser.add_argument(
        '--images', nargs='+',
        help='images to infer. Must not use with --image_dir')
    parser.add_argument(
        '--output_dir',
        help='directory to save demo results',
        default="infer_outputs")
    parser.add_argument(
        '--merge_pdfs', type=distutils.util.strtobool, default=True)

    args = parser.parse_args()

    return args 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:40,代碼來源:infer_simple.py


注:本文中的core.config.cfg方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。