當前位置: 首頁>>代碼示例>>Python>>正文


Python configuration.ModelConfig方法代碼示例

本文整理匯總了Python中configuration.ModelConfig方法的典型用法代碼示例。如果您正苦於以下問題:Python configuration.ModelConfig方法的具體用法?Python configuration.ModelConfig怎麽用?Python configuration.ModelConfig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在configuration的用法示例。


在下文中一共展示了configuration.ModelConfig方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_model

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def load_model(self):

        print("Loading model with an input size of: [" + str(self.input_width) + "," + str(self.input_height) + "]")
        graph = tf.Graph()
        with graph.as_default():
            model = inference_wrapper.InferenceWrapper()
            restore_fn = model.build_graph_from_config(configuration.ModelConfig(), os.path.join(self.model_dir, "model.ckpt-" + str(self.checkpoint)))
        graph.finalize()

        # Create the vocabulary.
        vocab = vocabulary.Vocabulary(os.path.join(self.model_dir, "word_counts.txt"))

        sess = tf.Session(graph=graph)
        
        restore_fn(sess)
        generator = caption_generator.CaptionGenerator(model, vocab)    

        self._sess = sess
        self._generator = generator
        self._vocab = vocab 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:22,代碼來源:im2txt_inference.py

示例2: testCallModelFnWithPlaceholders

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def testCallModelFnWithPlaceholders(self):
    with _reset_for_test() as session:
      config = configuration.ModelConfig()
      model = show_and_tell_model.ShowAndTellModel(config, mode='train')

      def model_fn(images, input_seq, target_seq, input_mask):
        model.build_model_for_tpu(images, input_seq, target_seq, input_mask)
        return model.total_loss

      images = tf.placeholder(tf.float32, shape=(1, 224, 224, 3))
      input_seq = tf.placeholder(tf.int32, shape=(1, 128))
      target_seq = tf.placeholder(tf.int32, shape=(1, 128))
      input_mask = tf.placeholder(tf.int32, shape=(1, 128))

      tpu_model_fn = tpu.rewrite(model_fn,
                                 [images, input_seq, target_seq, input_mask])
      caption = np.random.randint(low=0, high=1000, size=128).reshape((1, 128))
      session.run(tpu.initialize_system())
      session.run(tf.global_variables_initializer())
      inputs = {
          images: np.random.randn(1, 224, 224, 3),
          input_seq: caption,
          target_seq: caption,
          input_mask: np.random.random_integers(0, 1, size=128).reshape(1, 128),
      }
      session.run(tpu_model_fn, inputs)
      session.run(tpu.shutdown_system()) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:29,代碼來源:show_and_tell_tpu_test.py

示例3: model_fn

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def model_fn(features, labels, mode, params):
  im_mode = MODEKEY_TO_MODE[mode]
  model_config = configuration.ModelConfig()
  training_config = configuration.TrainingConfig()
  model = show_and_tell_model.ShowAndTellModel(
      model_config, mode=im_mode, train_inception=FLAGS.train_inception)
  model.build_model_for_tpu(
      images=features["images"],
      input_seqs=features["input_seqs"],
      target_seqs=features["target_seqs"],
      input_mask=features["input_mask"])

  optimizer = tf.train.GradientDescentOptimizer(
      learning_rate=training_config.initial_learning_rate)
  optimizer = tf.contrib.estimator.clip_gradients_by_norm(
      optimizer, training_config.clip_gradients)
  if FLAGS.use_tpu:
    optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
  train_op = optimizer.minimize(
      model.total_loss, global_step=tf.train.get_or_create_global_step())

  def scaffold_fn():
    """Load pretrained Inception checkpoint at initialization time."""
    return tf.train.Scaffold(init_fn=model.init_fn)

  return tf.contrib.tpu.TPUEstimatorSpec(
      mode=mode,
      loss=model.total_loss,
      train_op=train_op,
      scaffold_fn=scaffold_fn) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:32,代碼來源:train.py

示例4: input_fn

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def input_fn(params):
  model_config = configuration.ModelConfig()
  model_config.input_file_pattern = params["input_file_pattern"]
  model_config.batch_size = params["batch_size"]
  model_config.mode = params["mode"]
  model = show_and_tell_model.ShowAndTellModel(model_config, mode="train")
  model.build_inputs()
  return {
      "images": model.images,
      "input_seqs": model.input_seqs,
      "target_seqs": model.target_seqs,
      "input_mask": model.input_mask
  } 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:15,代碼來源:train.py

示例5: main

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def main():
  config = configuration.ModelConfig(data_filename="input_seqs_train")
  train(config) 
開發者ID:jxwufan,項目名稱:AssociativeRetrieval,代碼行數:5,代碼來源:FW_train.py

示例6: main

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def main():
  config = configuration.ModelConfig(data_filename="input_seqs_eval")
  train(config) 
開發者ID:jxwufan,項目名稱:AssociativeRetrieval,代碼行數:5,代碼來源:FW_eval.py

示例7: main

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def main(_):
  if os.path.isfile(FLAGS.feature_file):
    print("Feature file already exist.")
    return
  # Build the inference graph.
  g = tf.Graph()
  with g.as_default():
    model_config = configuration.ModelConfig()
    model = polyvore_model.PolyvoreModel(model_config, mode="inference")
    model.build()
    saver = tf.train.Saver()

  g.finalize()
  sess = tf.Session(graph=g)
  saver.restore(sess, FLAGS.checkpoint_path)
  test_json = json.load(open(FLAGS.json_file))
  k = 0

  # Save image ids and features in a dictionary.
  test_features = dict()

  for image_set in test_json:
    set_id = image_set["set_id"]
    image_feat = []
    image_rnn_feat = []
    ids = []
    k = k + 1
    print(str(k) + " : " + set_id)
    for image in image_set["items"]:
      filename = os.path.join(FLAGS.image_dir, set_id,
                              str(image["index"]) + ".jpg")
      with tf.gfile.GFile(filename, "r") as f:
        image_feed = f.read()

      [feat] = sess.run([model.image_embeddings],
                         feed_dict={"image_feed:0": image_feed})
      
      image_name = set_id + "_" + str(image["index"])
      test_features[image_name] = dict()
      test_features[image_name]["image_feat"] = np.squeeze(feat)
  
  with open(FLAGS.feature_file, "wb") as f:
    pkl.dump(test_features, f) 
開發者ID:xthan,項目名稱:polyvore,代碼行數:45,代碼來源:run_inference_siamese.py

示例8: main

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def main(_):
  # Build the inference graph.
  top_k = 4 # Print the top_k accuracy.
  true_pred = np.zeros(top_k)
  # Load pre-computed image features.
  with open(FLAGS.feature_file, "rb") as f:
    test_data = pkl.load(f)
  test_ids = test_data.keys()
  test_feat = np.zeros((len(test_ids),
                        len(test_data[test_ids[0]]["image_feat"])))
  test_rnn_feat = np.zeros((len(test_ids),
                            len(test_data[test_ids[0]]["image_rnn_feat"])))
  for i, test_id in enumerate(test_ids):
    # Image feature in visual-semantic embedding space.
    test_feat[i] = test_data[test_id]["image_feat"]
    # Image feature in the RNN space.
    test_rnn_feat[i] = test_data[test_id]["image_rnn_feat"]

  g = tf.Graph()
  with g.as_default():
    model_config = configuration.ModelConfig()
    model_config.rnn_type = FLAGS.rnn_type
    model = polyvore_model.PolyvoreModel(model_config, mode="inference")
    model.build()
    saver = tf.train.Saver()
    
    g.finalize()
    with tf.Session() as sess:
      saver.restore(sess, FLAGS.checkpoint_path)
      questions = json.load(open(FLAGS.json_file))
      
      all_pred = []
      set_ids = []
      all_scores = []
      for question in questions:
        score, pred = run_question_inference(sess, question, test_ids,
                                             test_feat, test_rnn_feat,
                                             model_config.num_lstm_units)
        if pred != []:
          all_pred.append(pred)
          all_scores.append(score)
          set_ids.append(question["question"][0].split("_")[0])
          # 0 is the correct answer, iterate over top_k.
          for i in range(top_k):
            if 0 in pred[:i+1]:
              true_pred[i] += 1

      # Print all top-k accuracy.
      for i in range(top_k):
        print("Top %d Accuracy: " % (i + 1))
        print("%d correct answers in %d valid questions." %
                  (true_pred[i], len(all_pred)))
        print("Accuracy: %f" % (true_pred[i] / len(all_pred)))
        
      s = np.empty((len(all_scores),), dtype=np.object)
      for i in range(len(all_scores)):
          s[i] = all_scores[i]

      with open(FLAGS.result_file, "wb") as f:
        pkl.dump({"set_ids": set_ids, "pred": all_pred, "score": s}, f) 
開發者ID:xthan,項目名稱:polyvore,代碼行數:62,代碼來源:fill_in_blank.py

示例9: main

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def main(_):
  if os.path.isfile(FLAGS.feature_file):
    print("Feature file already exist.")
    return
  # Build the inference graph.
  g = tf.Graph()
  with g.as_default():
    model_config = configuration.ModelConfig()
    model_config.rnn_type = FLAGS.rnn_type
    model = polyvore_model.PolyvoreModel(model_config, mode="inference")
    model.build()
    saver = tf.train.Saver()

  g.finalize()
  sess = tf.Session(graph=g)
  saver.restore(sess, FLAGS.checkpoint_path)
  test_json = json.load(open(FLAGS.json_file))
  k = 0

  # Save image ids and features in a dictionary.
  test_features = dict()

  for image_set in test_json:
    set_id = image_set["set_id"]
    image_feat = []
    image_rnn_feat = []
    ids = []
    k = k + 1
    print(str(k) + " : " + set_id)
    for image in image_set["items"]:
      filename = os.path.join(FLAGS.image_dir, set_id,
                              str(image["index"]) + ".jpg")
      with tf.gfile.GFile(filename, "r") as f:
        image_feed = f.read()

      [feat, rnn_feat] = sess.run([model.image_embeddings,
                                   model.rnn_image_embeddings],
                                  feed_dict={"image_feed:0": image_feed})
      
      image_name = set_id + "_" + str(image["index"])
      test_features[image_name] = dict()
      test_features[image_name]["image_feat"] = np.squeeze(feat)
      test_features[image_name]["image_rnn_feat"] = np.squeeze(rnn_feat)
  
  with open(FLAGS.feature_file, "wb") as f:
    pkl.dump(test_features, f) 
開發者ID:xthan,項目名稱:polyvore,代碼行數:48,代碼來源:run_inference.py

示例10: main

# 需要導入模塊: import configuration [as 別名]
# 或者: from configuration import ModelConfig [as 別名]
def main(_):
  # Build the inference graph.
  top_k = 4 # Print the top_k accuracy.
  true_pred = np.zeros(top_k)
  # Load pre-computed image features.
  with open(FLAGS.feature_file, "rb") as f:
    test_data = pkl.load(f)
  test_ids = test_data.keys()
  test_feat = np.zeros((len(test_ids),
                        len(test_data[test_ids[0]]["image_feat"])))
  for i, test_id in enumerate(test_ids):
    # Image feature in visual-semantic embedding space.
    test_feat[i] = test_data[test_id]["image_feat"]

  g = tf.Graph()
  with g.as_default():
    model_config = configuration.ModelConfig()
    model = polyvore_model.PolyvoreModel(model_config, mode="inference")
    model.build()
    saver = tf.train.Saver()
    
    g.finalize()
    with tf.Session() as sess:
      saver.restore(sess, FLAGS.checkpoint_path)
      questions = json.load(open(FLAGS.json_file))
      
      all_pred = []
      set_ids = []
      all_scores = []
      for question in questions:
        score, pred = run_question_inference(sess, question, test_ids,
                                             test_feat)
        if pred != []:
          all_pred.append(pred)
          all_scores.append(score)
          set_ids.append(question["question"][0].split("_")[0])
          # 0 is the correct answer, iterate over top_k.
          for i in range(top_k):
            if 0 in pred[:i+1]:
              true_pred[i] += 1

      # Print all top-k accuracy.
      for i in range(top_k):
        print("Top %d Accuracy: " % (i + 1))
        print("%d correct answers in %d valid questions." %
                  (true_pred[i], len(all_pred)))
        print("Accuracy: %f" % (true_pred[i] / len(all_pred)))
        
      s = np.empty((len(all_scores),), dtype=np.object)
      for i in range(len(all_scores)):
          s[i] = all_scores[i]

      with open(FLAGS.result_file, "wb") as f:
        pkl.dump({"set_ids": set_ids, "pred": all_pred, "score": s}, f) 
開發者ID:xthan,項目名稱:polyvore,代碼行數:56,代碼來源:fill_in_blank_siamese.py


注:本文中的configuration.ModelConfig方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。