本文整理匯總了Python中config.sample_rate方法的典型用法代碼示例。如果您正苦於以下問題:Python config.sample_rate方法的具體用法?Python config.sample_rate怎麽用?Python config.sample_rate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類config
的用法示例。
在下文中一共展示了config.sample_rate方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, fmax):
'''Log mel feature extractor.
Args:
sample_rate: int
window_size: int
hop_size: int
mel_bins: int
fmin: int, minimum frequency of mel filter banks
fmax: int, maximum frequency of mel filter banks
'''
self.window_size = window_size
self.hop_size = hop_size
self.window_func = np.hanning(window_size)
self.melW = librosa.filters.mel(
sr=sample_rate,
n_fft=window_size,
n_mels=mel_bins,
fmin=fmin,
fmax=fmax).T
'''(n_fft // 2 + 1, mel_bins)'''
示例2: write_audio
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def write_audio(path, audio, sample_rate):
"""Write audio sequence to .wav file.
Args:
path: string, path to write out .wav file.
data: ndarray, audio sequence to write out.
sample_rate: int, sample rate to write out.
Returns:
None.
"""
soundfile.write(file=path, data=audio, samplerate=sample_rate)
示例3: logmel
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def logmel(audio):
"""Calculate log Mel spectrogram of an audio sequence.
Args:
audio: 1darray, audio sequence.
Returns:
x: ndarray, log Mel spectrogram (n_time, n_freq)
"""
n_window = cfg.n_window
n_overlap = cfg.n_overlap
fs = cfg.sample_rate
ham_win = np.hamming(n_window)
[f, t, x] = signal.spectral.spectrogram(
audio,
window=ham_win,
nperseg=n_window,
noverlap=n_overlap,
detrend=False,
return_onesided=True,
mode='magnitude')
x = x.T
if globals().get('melW') is None:
global melW
melW = librosa.filters.mel(sr=fs,
n_fft=n_window,
n_mels=229,
fmin=0,
fmax=fs / 2.)
x = np.dot(x, melW.T)
x = np.log(x + 1e-8)
x = x.astype(np.float32)
return x
示例4: extract_feature
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def extract_feature(input_file, feature='fbank', dim=80, cmvn=True, delta=False, delta_delta=False,
window_size=25, stride=10, save_feature=None):
y, sr = librosa.load(input_file, sr=sample_rate)
yt, _ = librosa.effects.trim(y, top_db=20)
yt = normalize(yt)
ws = int(sr * 0.001 * window_size)
st = int(sr * 0.001 * stride)
if feature == 'fbank': # log-scaled
feat = librosa.feature.melspectrogram(y=yt, sr=sr, n_mels=dim,
n_fft=ws, hop_length=st)
feat = np.log(feat + 1e-6)
elif feature == 'mfcc':
feat = librosa.feature.mfcc(y=yt, sr=sr, n_mfcc=dim, n_mels=26,
n_fft=ws, hop_length=st)
feat[0] = librosa.feature.rmse(yt, hop_length=st, frame_length=ws)
else:
raise ValueError('Unsupported Acoustic Feature: ' + feature)
feat = [feat]
if delta:
feat.append(librosa.feature.delta(feat[0]))
if delta_delta:
feat.append(librosa.feature.delta(feat[0], order=2))
feat = np.concatenate(feat, axis=0)
if cmvn:
feat = (feat - feat.mean(axis=1)[:, np.newaxis]) / (feat.std(axis=1) + 1e-16)[:, np.newaxis]
if save_feature is not None:
tmp = np.swapaxes(feat, 0, 1).astype('float32')
np.save(save_feature, tmp)
return len(tmp)
else:
return np.swapaxes(feat, 0, 1).astype('float32')
示例5: __init__
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def __init__(self, sample_rate, window_size, overlap, mel_bins):
self.window_size = window_size
self.overlap = overlap
self.ham_win = np.hamming(window_size)
self.melW = librosa.filters.mel(sr=sample_rate,
n_fft=window_size,
n_mels=mel_bins,
fmin=50.,
fmax=sample_rate // 2).T
示例6: calculate_logmel
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def calculate_logmel(audio_path, sample_rate, feature_extractor):
# Read audio
(audio, fs) = read_audio(audio_path, target_fs=sample_rate)
'''We do not divide the maximum value of an audio here because we assume
the low energy of an audio may also contain information of a scene. '''
# Extract feature
feature = feature_extractor.transform(audio)
return feature
示例7: write_audio
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def write_audio(path, audio, sample_rate):
soundfile.write(file=path, data=audio, samplerate=sample_rate)
# Create an empty folder
示例8: calculate_features
# 需要導入模塊: import config [as 別名]
# 或者: from config import sample_rate [as 別名]
def calculate_features(args):
"""Calculate and write out features & ground truth notes of all songs in MUS
directory of all pianos.
"""
dataset_dir = args.dataset_dir
workspace = args.workspace
feat_type = args.feat_type
fs = cfg.sample_rate
tr_pianos = cfg.tr_pianos
te_pianos = cfg.te_pianos
pitch_bgn = cfg.pitch_bgn
pitch_fin = cfg.pitch_fin
out_dir = os.path.join(workspace, "features", feat_type)
create_folder(out_dir)
# Calculate features for all 9 pianos.
cnt = 0
for piano in tr_pianos + te_pianos:
audio_dir = os.path.join(dataset_dir, piano, "MUS")
wav_names = [na for na in os.listdir(audio_dir) if na.endswith('.wav')]
for wav_na in wav_names:
# Read audio.
bare_na = os.path.splitext(wav_na)[0]
wav_path = os.path.join(audio_dir, wav_na)
(audio, _) = read_audio(wav_path, target_fs=fs)
# Calculate feature.
if feat_type == "spectrogram":
x = spectrogram(audio)
elif feat_type == "logmel":
x = logmel(audio)
else:
raise Exception("Error!")
# Read piano roll from txt file.
(n_time, n_freq) = x.shape
txt_path = os.path.join(audio_dir, "%s.txt" % bare_na)
roll = txt_to_midi_roll(txt_path, max_fr_len=n_time) # (n_time, 128)
y = roll[:, pitch_bgn : pitch_fin] # (n_time, 88)
# Write out data.
data = [x, y]
out_path = os.path.join(out_dir, "%s.p" % bare_na)
print(cnt, out_path, x.shape, y.shape)
cPickle.dump(data, open(out_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
cnt += 1
### Pack features.