當前位置: 首頁>>代碼示例>>Python>>正文


Python config.lr方法代碼示例

本文整理匯總了Python中config.lr方法的典型用法代碼示例。如果您正苦於以下問題:Python config.lr方法的具體用法?Python config.lr怎麽用?Python config.lr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在config的用法示例。


在下文中一共展示了config.lr方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setup_train

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def setup_train(self, model_file_path=None):
        self.model = Model(model_file_path)

        params = list(self.model.encoder.parameters()) + list(self.model.decoder.parameters()) + \
                 list(self.model.reduce_state.parameters())
        initial_lr = config.lr_coverage if config.is_coverage else config.lr
        if config.mode == 'MLE':
            self.optimizer = Adagrad(params, lr=0.15, initial_accumulator_value=0.1)
        else:
            self.optimizer = Adam(params, lr=initial_lr)

        start_iter, start_loss = 0, 0

        if model_file_path is not None:
            state = torch.load(model_file_path, map_location= lambda storage, location: storage)
            start_iter = state['iter']
            start_loss = state['current_loss']
        return start_iter, start_loss 
開發者ID:wyu-du,項目名稱:Reinforce-Paraphrase-Generation,代碼行數:20,代碼來源:train.py

示例2: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def main():
    env = gym.make(env_name)
    env.seed(500)
    torch.manual_seed(500)

    num_inputs = env.observation_space.shape[0]
    num_actions = env.action_space.n
    print('state size:', num_inputs)
    print('action size:', num_actions)

    online_net = QNet(num_inputs, num_actions)
    target_net = QNet(num_inputs, num_actions)
    target_net.load_state_dict(online_net.state_dict())
    online_net.share_memory()
    target_net.share_memory()

    optimizer = SharedAdam(online_net.parameters(), lr=lr)
    global_ep, global_ep_r, res_queue = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue()

    writer = SummaryWriter('logs')

    online_net.to(device)
    target_net.to(device)
    online_net.train()
    target_net.train()

    workers = [Worker(online_net, target_net, optimizer, global_ep, global_ep_r, res_queue, i) for i in range(mp.cpu_count())]
    [w.start() for w in workers]
    res = []
    while True:
        r = res_queue.get()
        if r is not None:
            res.append(r)
            [ep, ep_r, loss] = r
            writer.add_scalar('log/score', float(ep_r), ep)
            writer.add_scalar('log/loss', float(loss), ep)
        else:
            break
    [w.join() for w in workers] 
開發者ID:g6ling,項目名稱:Reinforcement-Learning-Pytorch-Cartpole,代碼行數:41,代碼來源:train.py

示例3: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def main():
    env = gym.make(env_name)
    env.seed(500)
    torch.manual_seed(500)

    num_inputs = env.observation_space.shape[0]
    num_actions = env.action_space.n
    env.close()

    global_model = Model(num_inputs, num_actions)
    global_average_model = Model(num_inputs, num_actions)
    global_model.share_memory()
    global_average_model.share_memory()
    global_optimizer = SharedAdam(global_model.parameters(), lr=lr)
    global_ep, global_ep_r, res_queue = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue()

    writer = SummaryWriter('logs')

    n = mp.cpu_count()
    workers = [Worker(global_model, global_average_model, global_optimizer, global_ep, global_ep_r, res_queue, i) for i in range(n)]
    [w.start() for w in workers]
    res = []
    while True:
        r = res_queue.get()
        if r is not None:
            res.append(r)
            [ep, ep_r, loss] = r
            writer.add_scalar('log/score', float(ep_r), ep)
            writer.add_scalar('log/loss', float(loss), ep)
        else:
            break
    [w.join() for w in workers] 
開發者ID:g6ling,項目名稱:Reinforcement-Learning-Pytorch-Cartpole,代碼行數:34,代碼來源:train.py

示例4: __init__

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def __init__(self, global_online_model, global_target_model, global_memory, global_memory_pipe, res_queue):
        super(Learner, self).__init__()
        self.online_model = global_online_model
        self.target_model = global_target_model
        self.memory = global_memory
        self.memory_pipe = global_memory_pipe
        self.optimizer = optim.Adam(self.online_model.parameters(), lr=lr)
        self.res_queue = res_queue 
開發者ID:g6ling,項目名稱:Reinforcement-Learning-Pytorch-Cartpole,代碼行數:10,代碼來源:worker.py

示例5: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def main():
    env = gym.make(env_name)
    env.seed(500)
    torch.manual_seed(500)

    num_inputs = env.observation_space.shape[0]
    num_actions = env.action_space.n
    global_model = Model(num_inputs, num_actions)
    global_model.share_memory()
    global_optimizer = SharedAdam(global_model.parameters(), lr=lr)
    global_ep, global_ep_r, res_queue = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue()

    writer = SummaryWriter('logs')

    workers = [Worker(global_model, global_optimizer, global_ep, global_ep_r, res_queue, i) for i in range(mp.cpu_count())]
    [w.start() for w in workers]
    res = []
    while True:
        r = res_queue.get()
        if r is not None:
            res.append(r)
            [ep, ep_r, loss] = r
            writer.add_scalar('log/score', float(ep_r), ep)
            writer.add_scalar('log/loss', float(loss), ep)
        else:
            break
    [w.join() for w in workers] 
開發者ID:g6ling,項目名稱:Reinforcement-Learning-Pytorch-Cartpole,代碼行數:29,代碼來源:train.py

示例6: train

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def train(self):
        batch_num = len(self.train_loader)
        best_loss = 1e10
        for epoch in range(1, config.num_epochs + 1):
            self.model.train()
            print("epoch {}/{} :".format(epoch, config.num_epochs), end="\r")
            start = time.time()
            # halving the learning rate after epoch 8
            if epoch >= 8 and epoch % 2 == 0:
                self.lr *= 0.5
                state_dict = self.optim.state_dict()
                for param_group in state_dict["param_groups"]:
                    param_group["lr"] = self.lr
                self.optim.load_state_dict(state_dict)

            for batch_idx, train_data in enumerate(self.train_loader, start=1):
                batch_loss = self.step(train_data)

                self.model.zero_grad()
                batch_loss.backward()
                # gradient clipping
                nn.utils.clip_grad_norm_(self.model.parameters(),
                                         config.max_grad_norm)

                self.optim.step()
                batch_loss = batch_loss.detach().item()
                msg = "{}/{} {} - ETA : {} - loss : {:.4f}" \
                    .format(batch_idx, batch_num, progress_bar(batch_idx, batch_num),
                            eta(start, batch_idx, batch_num), batch_loss)
                print(msg, end="\r")

            val_loss = self.evaluate(msg)
            if val_loss <= best_loss:
                best_loss = val_loss
                self.save_model(val_loss, epoch)

            print("Epoch {} took {} - final loss : {:.4f} - val loss :{:.4f}"
                  .format(epoch, user_friendly_time(time_since(start)), batch_loss, val_loss)) 
開發者ID:seanie12,項目名稱:neural-question-generation,代碼行數:40,代碼來源:trainer.py

示例7: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def main():
    env = gym.make(env_name)
    env.seed(500)
    torch.manual_seed(500)

    num_inputs = env.observation_space.shape[0]
    num_actions = env.action_space.n
    print('state size:', num_inputs)
    print('action size:', num_actions)

    net = QNet(num_inputs, num_actions)

    optimizer = optim.Adam(net.parameters(), lr=lr)
    writer = SummaryWriter('logs')

    net.to(device)
    net.train()
    running_score = 0
    steps = 0
    loss = 0

    for e in range(3000):
        done = False

        score = 0
        state = env.reset()
        state = torch.Tensor(state).to(device)
        state = state.unsqueeze(0)

        while not done:
            steps += 1

            action = net.get_action(state)
            next_state, reward, done, _ = env.step(action)

            next_state = torch.Tensor(next_state)
            next_state = next_state.unsqueeze(0)

            mask = 0 if done else 1
            reward = reward if not done or score == 499 else -1
            transition = [state, next_state, action, reward, mask]

            score += reward
            state = next_state

            loss = QNet.train_model(net, optimizer, transition)

        score = score if score == 500.0 else score + 1
        running_score = 0.99 * running_score + 0.01 * score
        if e % log_interval == 0:
            print('{} episode | score: {:.2f}'.format(
                e, running_score))
            writer.add_scalar('log/score', float(running_score), e)
            writer.add_scalar('log/loss', float(loss), e)

        if running_score > goal_score:
            break 
開發者ID:g6ling,項目名稱:Reinforcement-Learning-Pytorch-Cartpole,代碼行數:59,代碼來源:train.py

示例8: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def main():
    env = gym.make(env_name)
    env.seed(500)
    torch.manual_seed(500)

    num_inputs = env.observation_space.shape[0]
    num_actions = env.action_space.n
    print('state size:', num_inputs)
    print('action size:', num_actions)

    net = GAE(num_inputs, num_actions)

    optimizer = optim.Adam(net.parameters(), lr=lr)
    writer = SummaryWriter('logs')

    net.to(device)
    net.train()
    running_score = 0
    steps = 0
    loss = 0

    for e in range(30000):
        done = False
        memory = Memory() 

        score = 0
        state = env.reset()
        state = torch.Tensor(state).to(device)
        state = state.unsqueeze(0)

        while not done:
            steps += 1

            action = net.get_action(state)
            next_state, reward, done, _ = env.step(action)

            next_state = torch.Tensor(next_state)
            next_state = next_state.unsqueeze(0)

            mask = 0 if done else 1
            reward = reward if not done or score == 499 else -1

            action_one_hot = torch.zeros(2)
            action_one_hot[action] = 1
            memory.push(state, next_state, action_one_hot, reward, mask)

            score += reward
            state = next_state

        loss = GAE.train_model(net, memory.sample(), optimizer)

        score = score if score == 500.0 else score + 1
        running_score = 0.99 * running_score + 0.01 * score
        if e % log_interval == 0:
            print('{} episode | score: {:.2f}'.format(
                e, running_score))
            writer.add_scalar('log/score', float(running_score), e)
            writer.add_scalar('log/loss', float(loss), e)

        if running_score > goal_score:
            break 
開發者ID:g6ling,項目名稱:Reinforcement-Learning-Pytorch-Cartpole,代碼行數:63,代碼來源:train.py

示例9: __init__

# 需要導入模塊: import config [as 別名]
# 或者: from config import lr [as 別名]
def __init__(self, args):
        # load dictionary and embedding file
        with open(config.embedding, "rb") as f:
            embedding = pickle.load(f)
            embedding = torch.tensor(embedding,
                                     dtype=torch.float).to(config.device)
        with open(config.word2idx_file, "rb") as f:
            word2idx = pickle.load(f)

        # train, dev loader
        print("load train data")
        self.train_loader = get_loader(config.train_src_file,
                                       config.train_trg_file,
                                       word2idx,
                                       use_tag=True,
                                       batch_size=config.batch_size,
                                       debug=config.debug)
        self.dev_loader = get_loader(config.dev_src_file,
                                     config.dev_trg_file,
                                     word2idx,
                                     use_tag=True,
                                     batch_size=128,
                                     debug=config.debug)

        train_dir = os.path.join("./save", "seq2seq")
        self.model_dir = os.path.join(
            train_dir, "train_%d" % int(time.strftime("%m%d%H%M%S")))
        if not os.path.exists(self.model_dir):
            os.makedirs(self.model_dir)

        self.model = Seq2seq(embedding)
        self.model = self.model.to(config.device)

        if len(args.model_path) > 0:
            print("load check point from: {}".format(args.model_path))
            state_dict = torch.load(args.model_path,
                                    map_location="cpu")
            self.model.load_state_dict(state_dict)

        params = self.model.parameters()

        self.lr = config.lr
        self.optim = optim.SGD(params, self.lr, momentum=0.8)
        # self.optim = optim.Adam(params)
        self.criterion = nn.CrossEntropyLoss(ignore_index=0) 
開發者ID:seanie12,項目名稱:neural-question-generation,代碼行數:47,代碼來源:trainer.py


注:本文中的config.lr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。