本文整理匯總了Python中config.load方法的典型用法代碼示例。如果您正苦於以下問題:Python config.load方法的具體用法?Python config.load怎麽用?Python config.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類config
的用法示例。
在下文中一共展示了config.load方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_module_menus
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def load_module_menus(self):
global module_menus
module_menus = {}
#config.load()
modules = config.get(['modules'], None)
for module in modules:
values = modules[module]
if module != "launcher" and config.get(["modules", module, "auto_start"], 0) != 1:
continue
#version = values["current_version"]
menu_path = os.path.join(root_path, module, "web_ui", "menu.json")
if not os.path.isfile(menu_path):
continue
module_menu = json.load(file(menu_path, 'r'))
module_menus[module] = module_menu
module_menus = sorted(module_menus.iteritems(), key=lambda (k,v): (v['menu_sort_id']))
#for k,v in self.module_menus:
# logging.debug("m:%s id:%d", k, v['menu_sort_id'])
示例2: req_init_module_handler
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def req_init_module_handler(self):
req = urlparse.urlparse(self.path).query
reqs = urlparse.parse_qs(req, keep_blank_values=True)
data = ''
try:
module = reqs['module'][0]
config.load()
if reqs['cmd'] == ['start']:
result = module_init.start(module)
data = '{ "module": "%s", "cmd": "start", "result": "%s" }' % (module, result)
elif reqs['cmd'] == ['stop']:
result = module_init.stop(module)
data = '{ "module": "%s", "cmd": "stop", "result": "%s" }' % (module, result)
elif reqs['cmd'] == ['restart']:
result_stop = module_init.stop(module)
result_start = module_init.start(module)
data = '{ "module": "%s", "cmd": "restart", "stop_result": "%s", "start_result": "%s" }' % (module, result_stop, result_start)
except Exception as e:
launcher_log.exception("init_module except:%s", e)
self.send_response("text/html", data)
示例3: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def main():
# Argument
parser = argparse.ArgumentParser(description='Dataset Preparing Script')
parser.add_argument('--config', '-c', default='config.json',
help='Load config from given json file')
args = parser.parse_args()
# Load config
config.load(args.config)
# Get valid names for alpha matting
names = get_valid_names(config.img_crop_dir, config.img_mask_dir,
config.img_mean_mask_dir, config.img_mean_grid_dir,
config.img_alpha_dir,
rm_exts=[False, False, False, True, False])
# Compute trimap
logger.info('Compute weight matrix for each image')
os.makedirs(config.img_trimap_dir, exist_ok=True)
for name in names:
compute_trimap_from_alpha(name, config.img_alpha_dir,
config.img_trimap_dir)
示例4: load_config
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def load_config(self):
if not self.config:
raise TaskError("unable to find forge.yaml, try running `forge setup`")
try:
conf = config.load(self.config)
except config.SchemaError, e:
raise TaskError(str(e))
示例5: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def main():
# Argument
parser = argparse.ArgumentParser(description='Dataset Preparing Script')
parser.add_argument('--config', '-c', default='config.json',
help='Load config from given json file')
args = parser.parse_args()
# Load config
config.load(args.config)
# Load image urls
url_pairs = load_img_urls(config.org_imgurl_filepath)
# Download
os.makedirs(config.img_raw_dir, exist_ok=True)
for name, url in url_pairs:
download_img(url, name, config.img_raw_dir)
# Load crop rectangles
rect_pairs = load_crop_rects(config.org_crop_filepath)
# Crop
img_size = (600, 800) # Decided by mask size
os.makedirs(config.img_crop_dir, exist_ok=True)
for name, rect in rect_pairs:
crop_img(name, config.img_raw_dir, config.img_crop_dir, rect, img_size)
# Parse masks
os.makedirs(config.img_mask_dir, exist_ok=True)
for name, _ in rect_pairs:
mask_name = '{}_mask.mat'.format(os.path.splitext(name)[0])
parse_mask(mask_name, config.org_mask_dir, name, config.img_mask_dir)
示例6: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def main():
# Argument
parser = argparse.ArgumentParser(description='Dataset Preparing Script')
parser.add_argument('--config', '-c', default='config.json',
help='Load config from given json file')
args = parser.parse_args()
# Load config
config.load(args.config)
# Setup segmentation dataset
dataset = PortraitSegDataset(config.img_crop_dir, config.img_mask_dir)
# Split into train and test
train_raw, _ = split_dataset(dataset)
# Setup mean mask
face_masker = FaceMasker(config.face_predictor_filepath,
config.mean_mask_filepath, train_raw)
# Get valid names in 3 channel segmentation stage
names = get_valid_names(config.img_crop_dir, config.img_mask_dir)
# Start alignment
logger.info('Generate aligned mask and grids')
os.makedirs(config.img_mean_mask_dir, exist_ok=True)
os.makedirs(config.img_mean_grid_dir, exist_ok=True)
for name in names:
align_mask(name, config.img_crop_dir, config.img_mean_mask_dir,
config.img_mean_grid_dir, face_masker)
示例7: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def main():
# Argument
parser = argparse.ArgumentParser(description='Dataset Preparing Script')
parser.add_argument('--config', '-c', default='config.json',
help='Load config from given json file')
parser.add_argument('--pseudo_alpha', action='store_true',
help='Dummy alpha generation')
args = parser.parse_args()
# Load config
config.load(args.config)
if args.pseudo_alpha:
logger.info('Compute pseudo alpha images')
# Get valid names in 6 channel segmentation stage
names = get_valid_names(config.img_crop_dir, config.img_mask_dir,
config.img_mean_mask_dir,
config.img_mean_grid_dir,
rm_exts=[False, False, False, True])
# Create pseudo alpha images
os.makedirs(config.img_alpha_dir, exist_ok=True)
for name in names:
create_pseudo_alpha(name, config.img_mask_dir,
config.img_alpha_dir)
# Get valid names for alpha matting
names = get_valid_names(config.img_crop_dir, config.img_mask_dir,
config.img_mean_mask_dir, config.img_mean_grid_dir,
config.img_alpha_dir,
rm_exts=[False, False, False, True, False])
# Pre-compute look up table for weights
logger.info('Compute look up table for weights')
weight_lut = AlphaWeightLut(names, config.img_alpha_dir)
# Compute weight matrix
logger.info('Compute weight matrix for each image')
os.makedirs(config.img_alpha_weight_dir, exist_ok=True)
for name in names:
compute_weights(name, config.img_alpha_dir,
config.img_alpha_weight_dir, weight_lut)
示例8: load_index
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def load_index(self, index_id):
if self.annoy_index is None:
log.info("loading initial index with id {}", self.current_index)
else:
log.info("switching index from {} to {}", self.current_index, index_id)
newindex = AnnoyIndex(108, metric='euclidean')
newindex.load(config.index_config['index_path'] + 'index_' + str(index_id) + '.ann')
if self.annoy_index is not None:
self.annoy_index.unload()
self.annoy_index = newindex
self.current_index = index_id
log.info("finished switching index. now using index {}", self.current_index)
示例9: main
# 需要導入模塊: import config [as 別名]
# 或者: from config import load [as 別名]
def main(argv):
# Argument
parser = argparse.ArgumentParser(description='Dataset Preparing Script')
parser.add_argument('--config', '-c', default='config.json',
help='Load config from given json file')
parser.add_argument('-i', required=True,
help='Input image file path')
parser.add_argument('-o', default='output.png',
help='Output image file path')
parser.add_argument('--mode', choices=['seg', 'seg+', 'seg_tri', 'mat'],
help='Model mode', required=True)
parser.add_argument('--model_path', required=True,
help='Pretrained model path')
parser.add_argument('--model_mode', default=None,
help='Mode for loading `model_path`')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
args = parser.parse_args(argv)
inp_filepath, out_filepath = args.i, args.o
# Load config
config.load(args.config)
# Create predictor
predictor = Predictor(args.mode, args.model_path, args.model_mode,
args.gpu, config.face_predictor_filepath,
config.mean_mask_filepath)
# Load input image
logger.info('Load input file: %s', inp_filepath)
img = cv2.imread(inp_filepath)
if img is None:
logger.error('Failed to load')
return
# Predict
ret = predictor.predict(img)
if ret is None:
logger.error('Failed to predict')
return
if args.mode.startswith('seg'):
score = ret
# Convert to trimap
score = np.argmax(score, axis=0)
# Write out trimap
vis_img = np.zeros_like(img)
vis_img[score == 1] = 127
vis_img[score == 2] = 255
cv2.imwrite(out_filepath, vis_img)
elif args.mode.startswith('mat'):
alpha = ret
# Write out alpha
cv2.imwrite(out_filepath, alpha * 255)