本文整理匯總了Python中config.device方法的典型用法代碼示例。如果您正苦於以下問題:Python config.device方法的具體用法?Python config.device怎麽用?Python config.device使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類config
的用法示例。
在下文中一共展示了config.device方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def forward(self, event, control=None, hidden=None):
# One step forward
assert len(event.shape) == 2
assert event.shape[0] == 1
batch_size = event.shape[1]
event = self.event_embedding(event)
if control is None:
default = torch.ones(1, batch_size, 1).to(device)
control = torch.zeros(1, batch_size, self.control_dim).to(device)
else:
default = torch.zeros(1, batch_size, 1).to(device)
assert control.shape == (1, batch_size, self.control_dim)
concat = torch.cat([event, default, control], -1)
input = self.concat_input_fc(concat)
input = self.concat_input_fc_activation(input)
_, hidden = self.gru(input, hidden)
output = hidden.permute(1, 0, 2).contiguous()
output = output.view(batch_size, -1).unsqueeze(0)
output = self.output_fc(output)
return output, hidden
示例2: load_session
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def load_session():
global sess_path, model_config, device, learning_rate, reset_optimizer
try:
sess = torch.load(sess_path)
if 'model_config' in sess and sess['model_config'] != model_config:
model_config = sess['model_config']
print('Use session config instead:')
print(utils.dict2params(model_config))
model_state = sess['model_state']
optimizer_state = sess['model_optimizer_state']
print('Session is loaded from', sess_path)
sess_loaded = True
except:
print('New session')
sess_loaded = False
model = PerformanceRNN(**model_config).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
if sess_loaded:
model.load_state_dict(model_state)
if not reset_optimizer:
optimizer.load_state_dict(optimizer_state)
return model, optimizer
示例3: forward
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def forward(self, input, label):
x = F.normalize(input)
W = F.normalize(self.weight)
cosine = F.linear(x, W)
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
one_hot = torch.zeros(cosine.size(), device=device)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
開發者ID:LcenArthas,項目名稱:CCF-BDCI2019-Multi-person-Face-Recognition-Competition-Baseline,代碼行數:18,代碼來源:models.py
示例4: init_model
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def init_model(self):
if cfg.oracle_pretrain:
if not os.path.exists(cfg.oracle_state_dict_path):
create_oracle()
self.oracle.load_state_dict(torch.load(cfg.oracle_state_dict_path))
if cfg.dis_pretrain:
self.log.info(
'Load pretrained discriminator: {}'.format(cfg.pretrained_dis_path))
self.dis.load_state_dict(torch.load(cfg.pretrained_dis_path))
if cfg.gen_pretrain:
self.log.info('Load MLE pretrained generator gen: {}'.format(cfg.pretrained_gen_path))
self.gen.load_state_dict(torch.load(cfg.pretrained_gen_path, map_location='cuda:{}'.format(cfg.device)))
if cfg.CUDA:
self.oracle = self.oracle.cuda()
self.gen = self.gen.cuda()
self.dis = self.dis.cuda()
示例5: init_model
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def init_model(self):
if cfg.dis_pretrain:
self.log.info(
'Load pretrained discriminator: {}'.format(cfg.pretrained_dis_path))
self.dis.load_state_dict(torch.load(cfg.pretrained_dis_path))
if cfg.gen_pretrain:
for i in range(cfg.k_label):
self.log.info('Load MLE pretrained generator gen: {}'.format(cfg.pretrained_gen_path + '%d' % i))
self.gen_list[i].load_state_dict(torch.load(cfg.pretrained_gen_path + '%d' % i))
if cfg.clas_pretrain:
self.log.info('Load pretrained classifier: {}'.format(cfg.pretrained_clas_path))
self.clas.load_state_dict(torch.load(cfg.pretrained_clas_path, map_location='cuda:%d' % cfg.device))
if cfg.CUDA:
for i in range(cfg.k_label):
self.gen_list[i] = self.gen_list[i].cuda()
self.dis = self.dis.cuda()
self.clas = self.clas.cuda()
示例6: sample
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def sample(self, batch_size, net, target_net, beta):
probability_sum = sum(self.memory_probabiliy)
p = [probability / probability_sum for probability in self.memory_probabiliy]
indexes = np.random.choice(np.arange(len(self.memory)), batch_size, p=p)
transitions = [self.memory[idx] for idx in indexes]
transitions_p = [p[idx] for idx in indexes]
batch = Transition(*zip(*transitions))
weights = [pow(self.capacity * p_j, -beta) for p_j in transitions_p]
weights = torch.Tensor(weights).to(device)
weights = weights / weights.max()
td_error = QNet.get_td_error(net, target_net, batch.state, batch.next_state, batch.action, batch.reward, batch.mask)
td_error = td_error.detach()
td_error_idx = 0
for idx in indexes:
self.memory_probabiliy[idx] = pow(abs(td_error[td_error_idx]) + small_epsilon, alpha).item()
# print(pow(abs(td_error[td_error_idx]) + small_epsilon, alpha).item())
td_error_idx += 1
return batch, weights
示例7: sample
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def sample(self, batch_size, net, target_net, beta):
probability_sum = sum(self.memory_probabiliy)
p = [probability / probability_sum for probability in self.memory_probabiliy]
# print(len(self.memory_probabiliy))
indexes = np.random.choice(np.arange(len(self.memory)), batch_size, p=p)
transitions = [self.memory[idx] for idx in indexes]
transitions_p = [p[idx] for idx in indexes]
batch = Transition(*zip(*transitions))
weights = [pow(self.capacity * p_j, -beta) for p_j in transitions_p]
weights = torch.Tensor(weights).to(device)
# print(weights)
weights = weights / weights.max()
# print(weights)
td_error = QNet.get_td_error(net, target_net, batch.state, batch.next_state, batch.action, batch.reward, batch.mask)
td_error_idx = 0
for idx in indexes:
self.memory_probabiliy[idx] = pow(abs(td_error[td_error_idx]) + small_epsilon, alpha).item()
# print(pow(abs(td_error[td_error_idx]) + small_epsilon, alpha).item())
td_error_idx += 1
return batch, weights
示例8: sample
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def sample(self, batch_size, net, target_net, beta):
probability_sum = sum(self.memory_probabiliy)
p = [probability / probability_sum for probability in self.memory_probabiliy]
indexes = np.random.choice(np.arange(len(self.memory)), batch_size, p=p)
transitions = [self.memory[idx] for idx in indexes]
transitions_p = [p[idx] for idx in indexes]
batch = Transition(*zip(*transitions))
weights = [pow(self.capacity * p_j, -beta) for p_j in transitions_p]
weights = torch.Tensor(weights).to(device)
weights = weights / weights.max()
td_error = QNet.get_loss(net, target_net, batch.state, batch.next_state, batch.action, batch.reward, batch.mask)
td_error = td_error.detach()
td_error_idx = 0
for idx in indexes:
self.memory_probabiliy[idx] = pow(abs(td_error[td_error_idx]) + small_epsilon, alpha).item()
td_error_idx += 1
return batch, weights
示例9: valid
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def valid(valid_loader, model, logger):
model.eval()
losses = AverageMeter()
# Batches
for data in tqdm(valid_loader):
# Move to GPU, if available
padded_input, padded_target, input_lengths = data
padded_input = padded_input.to(device)
padded_target = padded_target.to(device)
input_lengths = input_lengths.to(device)
with torch.no_grad():
# Forward prop.
pred, gold = model(padded_input, input_lengths, padded_target)
loss, n_correct = cal_performance(pred, gold, smoothing=args.label_smoothing)
# Keep track of metrics
losses.update(loss.item())
# Print status
logger.info('\nValidation Loss {loss.val:.5f} ({loss.avg:.5f})\n'.format(loss=losses))
return losses.avg
示例10: get_primary_event
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def get_primary_event(self, batch_size):
return torch.LongTensor([[self.primary_event] * batch_size]).to(device)
示例11: get_image
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def get_image(transformer, filepath, flip=False):
img = Image.open(filepath)
if flip:
img = ImageOps.flip(img)
img = transformer(img)
return img.to(device)
示例12: forward
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def forward(self, input, label):
x = F.normalize(input)
W = F.normalize(self.weight)
cosine = F.linear(x, W)
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m)
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
one_hot = torch.zeros(cosine.size(), device=device)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
output *= self.s
return output
示例13: get_image
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def get_image(filepath, transformer, flip=False):
img = Image.open(filepath).convert('RGB')
if flip:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
img = transformer(img)
return img.to(device)
開發者ID:LcenArthas,項目名稱:CCF-BDCI2019-Multi-person-Face-Recognition-Competition-Baseline,代碼行數:8,代碼來源:megaface_utils.py
示例14: train
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def train(train_loader, model, optimizer, epoch, logger):
model.train() # train mode (dropout and batchnorm is used)
losses = AverageMeter()
# Batches
for i, (img, alpha_label) in enumerate(train_loader):
# Move to GPU, if available
img = img.type(torch.FloatTensor).to(device) # [N, 4, 320, 320]
alpha_label = alpha_label.type(torch.FloatTensor).to(device) # [N, 2, 320, 320]
alpha_label = alpha_label.reshape((-1, 2, im_size * im_size)) # [N, 2, 320*320]
# Forward prop.
alpha_out = model(img) # [N, 320, 320]
alpha_out = alpha_out.reshape((-1, 1, im_size * im_size)) # [N, 320*320]
# Calculate loss
# loss = criterion(alpha_out, alpha_label)
loss = alpha_prediction_loss(alpha_out, alpha_label)
# Back prop.
optimizer.zero_grad()
loss.backward()
# Clip gradients
clip_gradient(optimizer, grad_clip)
# Update weights
optimizer.step()
# Keep track of metrics
losses.update(loss.item())
# Print status
if i % print_freq == 0:
status = 'Epoch: [{0}][{1}/{2}]\t' \
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch, i, len(train_loader), loss=losses)
logger.info(status)
return losses.avg
示例15: valid
# 需要導入模塊: import config [as 別名]
# 或者: from config import device [as 別名]
def valid(valid_loader, model, logger):
model.eval() # eval mode (dropout and batchnorm is NOT used)
losses = AverageMeter()
# Batches
for img, alpha_label in tqdm(valid_loader):
# Move to GPU, if available
img = img.type(torch.FloatTensor).to(device) # [N, 4, 320, 320]
alpha_label = alpha_label.type(torch.FloatTensor).to(device) # [N, 2, 320, 320]
alpha_label = alpha_label.reshape((-1, 2, im_size * im_size)) # [N, 2, 320*320]
# Forward prop.
alpha_out = model(img) # [N, 320, 320]
alpha_out = alpha_out.reshape((-1, 1, im_size * im_size)) # [N, 320*320]
# Calculate loss
# loss = criterion(alpha_out, alpha_label)
loss = alpha_prediction_loss(alpha_out, alpha_label)
# Keep track of metrics
losses.update(loss.item())
# Print status
status = 'Validation: Loss {loss.avg:.4f}\n'.format(loss=losses)
logger.info(status)
return losses.avg