當前位置: 首頁>>代碼示例>>Python>>正文


Python config.dataset方法代碼示例

本文整理匯總了Python中config.dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python config.dataset方法的具體用法?Python config.dataset怎麽用?Python config.dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在config的用法示例。


在下文中一共展示了config.dataset方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: path_for

# 需要導入模塊: import config [as 別名]
# 或者: from config import dataset [as 別名]
def path_for(train=False, val=False, test=False, question=False, trainval=False, answer=False):
    assert train + val + test + trainval == 1
    assert question + answer == 1

    if train:
        split = 'train2014'
    elif val:
        split = 'val2014'
    elif trainval:
        split = 'trainval2014'
    else:
        split = config.test_split

    if question:
        fmt = 'v2_{0}_{1}_{2}_questions.json'
    else:
        if test:
            # just load validation data in the test=answer=True case, will be ignored anyway
            split = 'val2014'
        fmt = 'v2_{1}_{2}_annotations.json'
    s = fmt.format(config.task, config.dataset, split)
    return os.path.join(config.qa_path, s) 
開發者ID:KaihuaTang,項目名稱:VQA2.0-Recent-Approachs-2018.pytorch,代碼行數:24,代碼來源:utils.py

示例2: path_for

# 需要導入模塊: import config [as 別名]
# 或者: from config import dataset [as 別名]
def path_for(train=False, val=False, test=False, question=False, answer=False):
    assert train + val + test == 1
    assert question + answer == 1

    if train:
        split = 'train2014'
    elif val:
        split = 'val2014'
    else:
        split = config.test_split

    if question:
        fmt = 'v2_{0}_{1}_{2}_questions.json'
    else:
        if test:
            # just load validation data in the test=answer=True case, will be ignored anyway
            split = 'val2014'
        fmt = 'v2_{1}_{2}_annotations.json'
    s = fmt.format(config.task, config.dataset, split)
    return os.path.join(config.qa_path, s) 
開發者ID:Cyanogenoid,項目名稱:vqa-counting,代碼行數:22,代碼來源:utils.py

示例3: load_dataset

# 需要導入模塊: import config [as 別名]
# 或者: from config import dataset [as 別名]
def load_dataset(dataset_spec=None, verbose=True, **spec_overrides):
    if verbose: print('Loading dataset...')
    if dataset_spec is None: dataset_spec = config.dataset
    dataset_spec = dict(dataset_spec) # take a copy of the dict before modifying it
    dataset_spec.update(spec_overrides)
    dataset_spec['h5_path'] = os.path.join(config.data_dir, dataset_spec['h5_path'])
    if 'label_path' in dataset_spec: dataset_spec['label_path'] = os.path.join(config.data_dir, dataset_spec['label_path'])
    training_set = dataset.Dataset(**dataset_spec)
    if verbose: print('Dataset shape =', np.int32(training_set.shape).tolist())
    drange_orig = training_set.get_dynamic_range()
    if verbose: print('Dynamic range =', drange_orig)
    return training_set, drange_orig 
開發者ID:MSC-BUAA,項目名稱:Keras-progressive_growing_of_gans,代碼行數:14,代碼來源:train.py

示例4: __init__

# 需要導入模塊: import config [as 別名]
# 或者: from config import dataset [as 別名]
def __init__(self, config, args):
        self.config = config
        for k, v in args.__dict__.items():
            setattr(self.config, k, v)
        setattr(self.config, 'save_dir', '{}_log'.format(self.config.dataset))

        disp_str = ''
        for attr in sorted(dir(self.config), key=lambda x: len(x)):
            if not attr.startswith('__'):
                disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr))
        sys.stdout.write(disp_str)
        sys.stdout.flush()

        self.labeled_loader, self.unlabeled_loader, self.unlabeled_loader2, self.dev_loader, self.special_set = data.get_svhn_loaders(config)

        self.dis = model.Discriminative(config).cuda()
        self.gen = model.Generator(image_size=config.image_size, noise_size=config.noise_size).cuda()

        self.dis_optimizer = optim.Adam(self.dis.parameters(), lr=config.dis_lr, betas=(0.5, 0.999)) # 0.0 0.9999
        self.gen_optimizer = optim.Adam(self.gen.parameters(), lr=config.gen_lr, betas=(0.0, 0.999)) # 0.0 0.9999

        self.d_criterion = nn.CrossEntropyLoss()

        if not os.path.exists(self.config.save_dir):
            os.makedirs(self.config.save_dir)

        log_path = os.path.join(self.config.save_dir, '{}.FM+PT+ENT.{}.txt'.format(self.config.dataset, self.config.suffix))
        self.logger = open(log_path, 'wb')
        self.logger.write(disp_str) 
開發者ID:kimiyoung,項目名稱:ssl_bad_gan,代碼行數:31,代碼來源:svhn_trainer.py

示例5: visualize

# 需要導入模塊: import config [as 別名]
# 或者: from config import dataset [as 別名]
def visualize(self):
        self.gen.eval()
        self.dis.eval()

        vis_size = 100
        noise = Variable(torch.Tensor(vis_size, self.config.noise_size).uniform_().cuda())
        gen_images = self.gen(noise)

        save_path = os.path.join(self.config.save_dir, '{}.FM+PT+Ent.{}.png'.format(self.config.dataset, self.config.suffix))
        vutils.save_image(gen_images.data.cpu(), save_path, normalize=True, range=(-1,1), nrow=10) 
開發者ID:kimiyoung,項目名稱:ssl_bad_gan,代碼行數:12,代碼來源:svhn_trainer.py

示例6: __init__

# 需要導入模塊: import config [as 別名]
# 或者: from config import dataset [as 別名]
def __init__(self, opt):
        self.log = create_logger(__name__, silent=False, to_disk=True,
                                 log_file=cfg.log_filename if cfg.if_test
                                 else [cfg.log_filename, cfg.save_root + 'log.txt'])
        self.sig = Signal(cfg.signal_file)
        self.opt = opt
        self.show_config()

        self.clas = None

        # load dictionary
        self.word2idx_dict, self.idx2word_dict = load_dict(cfg.dataset)

        # Dataloader
        try:
            self.train_data = GenDataIter(cfg.train_data)
            self.test_data = GenDataIter(cfg.test_data, if_test_data=True)
        except:
            pass

        try:
            self.train_data_list = [GenDataIter(cfg.cat_train_data.format(i)) for i in range(cfg.k_label)]
            self.test_data_list = [GenDataIter(cfg.cat_test_data.format(i), if_test_data=True) for i in
                                   range(cfg.k_label)]
            self.clas_data_list = [GenDataIter(cfg.cat_test_data.format(str(i)), if_test_data=True) for i in
                                   range(cfg.k_label)]

            self.train_samples_list = [self.train_data_list[i].target for i in range(cfg.k_label)]
            self.clas_samples_list = [self.clas_data_list[i].target for i in range(cfg.k_label)]
        except:
            pass

        # Criterion
        self.mle_criterion = nn.NLLLoss()
        self.dis_criterion = nn.CrossEntropyLoss()
        self.clas_criterion = nn.CrossEntropyLoss()

        # Optimizer
        self.clas_opt = None

        # Metrics
        self.bleu = BLEU('BLEU', gram=[2, 3, 4, 5], if_use=cfg.use_bleu)
        self.nll_gen = NLL('NLL_gen', if_use=cfg.use_nll_gen, gpu=cfg.CUDA)
        self.nll_div = NLL('NLL_div', if_use=cfg.use_nll_div, gpu=cfg.CUDA)
        self.self_bleu = BLEU('Self-BLEU', gram=[2, 3, 4], if_use=cfg.use_self_bleu)
        self.clas_acc = ACC(if_use=cfg.use_clas_acc)
        self.ppl = PPL(self.train_data, self.test_data, n_gram=5, if_use=cfg.use_ppl)
        self.all_metrics = [self.bleu, self.nll_gen, self.nll_div, self.self_bleu, self.ppl] 
開發者ID:williamSYSU,項目名稱:TextGAN-PyTorch,代碼行數:50,代碼來源:instructor.py

示例7: train

# 需要導入模塊: import config [as 別名]
# 或者: from config import dataset [as 別名]
def train(self):
        config = self.config
        self.param_init()

        self.iter_cnt = 0
        iter, min_dev_incorrect = 0, 1e6
        monitor = OrderedDict()
        
        batch_per_epoch = int((len(self.unlabeled_loader) + config.train_batch_size - 1) / config.train_batch_size)
        min_lr = config.min_lr if hasattr(config, 'min_lr') else 0.0
        while True:

            if iter % batch_per_epoch == 0:
                epoch = iter / batch_per_epoch
                if config.dataset != 'svhn' and epoch >= config.max_epochs:
                    break
                epoch_ratio = float(epoch) / float(config.max_epochs)
                # use another outer max to prevent any float computation precision problem
                self.dis_optimizer.param_groups[0]['lr'] = max(min_lr, config.dis_lr * min(3. * (1. - epoch_ratio), 1.))
                self.gen_optimizer.param_groups[0]['lr'] = max(min_lr, config.gen_lr * min(3. * (1. - epoch_ratio), 1.))

            iter_vals = self._train()

            for k, v in iter_vals.items():
                if not monitor.has_key(k):
                    monitor[k] = 0.
                monitor[k] += v

            if iter % config.vis_period == 0:
                self.visualize()

            if iter % config.eval_period == 0:
                train_loss, train_incorrect = self.eval(self.labeled_loader)
                dev_loss, dev_incorrect = self.eval(self.dev_loader)

                unl_acc, gen_acc, max_unl_acc, max_gen_acc = self.eval_true_fake(self.dev_loader, 10)

                train_incorrect /= 1.0 * len(self.labeled_loader)
                dev_incorrect /= 1.0 * len(self.dev_loader)
                min_dev_incorrect = min(min_dev_incorrect, dev_incorrect)

                disp_str = '#{}\ttrain: {:.4f}, {:.4f} | dev: {:.4f}, {:.4f} | best: {:.4f}'.format(
                    iter, train_loss, train_incorrect, dev_loss, dev_incorrect, min_dev_incorrect)
                for k, v in monitor.items():
                    disp_str += ' | {}: {:.4f}'.format(k, v / config.eval_period)
                
                disp_str += ' | [Eval] unl acc: {:.4f}, gen acc: {:.4f}, max unl acc: {:.4f}, max gen acc: {:.4f}'.format(unl_acc, gen_acc, max_unl_acc, max_gen_acc)
                disp_str += ' | lr: {:.5f}'.format(self.dis_optimizer.param_groups[0]['lr'])
                disp_str += '\n'

                monitor = OrderedDict()

                self.logger.write(disp_str)
                sys.stdout.write(disp_str)
                sys.stdout.flush()

            iter += 1
            self.iter_cnt += 1 
開發者ID:kimiyoung,項目名稱:ssl_bad_gan,代碼行數:60,代碼來源:svhn_trainer.py


注:本文中的config.dataset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。