本文整理匯總了Python中config.config.num_classes方法的典型用法代碼示例。如果您正苦於以下問題:Python config.num_classes方法的具體用法?Python config.num_classes怎麽用?Python config.num_classes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類config.config
的用法示例。
在下文中一共展示了config.num_classes方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: next_sample
# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import num_classes [as 別名]
def next_sample(self):
"""Helper function for reading in next sample."""
if self.cur >= len(self.seq):
raise StopIteration
idx = self.seq[self.cur]
self.cur += 1
uv_path = self.uv_file_list[idx]
image_path = self.image_file_list[idx]
uvmap = np.load(uv_path)
img = cv2.imread(image_path)[:,:,::-1]#to rgb
hlabel = uvmap
#print(hlabel.shape)
#hlabel = np.array(header.label).reshape( (self.output_label_size, self.output_label_size, self.num_classes) )
hlabel /= self.input_img_size
return img, hlabel
示例2: next_sample
# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import num_classes [as 別名]
def next_sample(self):
"""Helper function for reading in next sample."""
if self.cur >= len(self.seq):
raise StopIteration
idx = self.seq[self.cur]
self.cur += 1
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
img = mx.image.imdecode(img).asnumpy()
hlabel = np.array(header.label).reshape( (self.num_classes,2) )
if not config.label_xfirst:
hlabel = hlabel[:,::-1] #convert to X/W first
annot = {'scale': config.base_scale}
#ul = np.array( (50000,50000), dtype=np.int32)
#br = np.array( (0,0), dtype=np.int32)
#for i in range(hlabel.shape[0]):
# h = int(hlabel[i][0])
# w = int(hlabel[i][1])
# key = np.array((h,w))
# ul = np.minimum(key, ul)
# br = np.maximum(key, br)
return img, hlabel, annot
示例3: compute_metric
# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import num_classes [as 別名]
def compute_metric(self, results):
hist = np.zeros((config.num_classes, config.num_classes))
correct = 0
labeled = 0
count = 0
for d in results:
hist += d['hist']
correct += d['correct']
labeled += d['labeled']
count += 1
iu, mean_IU, _, mean_pixel_acc = compute_score(hist, correct,
labeled)
result_line = print_iou(iu, mean_pixel_acc,
dataset.get_class_names(), True)
return result_line
示例4: split_data
# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import num_classes [as 別名]
def split_data(file2idx, val_ratio=0.1):
'''
劃分數據集,val需保證每類至少有1個樣本
:param file2idx:
:param val_ratio:驗證集占總數據的比例
:return:訓練集,驗證集路徑
'''
data = set(os.listdir(config.train_dir))
val = set()
idx2file = [[] for _ in range(config.num_classes)]
for file, list_idx in file2idx.items():
for idx in list_idx:
idx2file[idx].append(file)
for item in idx2file:
# print(len(item), item)
num = int(len(item) * val_ratio)
val = val.union(item[:num])
train = data.difference(val)
return list(train), list(val)
示例5: func_per_iteration
# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import num_classes [as 別名]
def func_per_iteration(self, data, device):
img = data['data']
label = data['label']
name = data['fn']
pred = self.sliding_eval(img, config.eval_crop_size,
config.eval_stride_rate, device)
hist_tmp, labeled_tmp, correct_tmp = hist_info(config.num_classes,
pred,
label)
results_dict = {'hist': hist_tmp, 'labeled': labeled_tmp,
'correct': correct_tmp}
if self.save_path is not None:
fn = name + '.png'
cv2.imwrite(os.path.join(self.save_path, fn), pred)
logger.info('Save the image ' + fn)
if self.show_image:
colors = self.dataset.get_class_colors()
image = img
clean = np.zeros(label.shape)
comp_img = show_img(colors, config.background, image, clean,
label,
pred)
cv2.imshow('comp_image', comp_img)
cv2.waitKey(0)
return results_dict
示例6: func_per_iteration
# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import num_classes [as 別名]
def func_per_iteration(self, data, device):
img = data['data']
label = data['label']
name = data['fn']
pred = self.sliding_eval(img, config.eval_crop_size,
config.eval_stride_rate, device)
hist_tmp, labeled_tmp, correct_tmp = hist_info(config.num_classes,
pred,
label)
results_dict = {'hist': hist_tmp, 'labeled': labeled_tmp,
'correct': correct_tmp}
if self.save_path is not None:
fn = name + '.png'
cv2.imwrite(os.path.join(self.save_path, fn), pred)
logger.info('Save the image ' + fn)
if self.show_image:
colors = self.dataset.get_class_colors
image = img
clean = np.zeros(label.shape)
comp_img = show_img(colors, config.background, image, clean,
label,
pred)
cv2.imshow('comp_image', comp_img)
cv2.waitKey(0)
return results_dict
示例7: count_labels
# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import num_classes [as 別名]
def count_labels(data, file2idx):
'''
統計每個類別的樣本數
:param data:
:param file2idx:
:return:
'''
cc = [0] * config.num_classes
for fp in data:
for i in file2idx[fp]:
cc[i] += 1
return np.array(cc)