當前位置: 首頁>>代碼示例>>Python>>正文


Python config.lr方法代碼示例

本文整理匯總了Python中config.config.lr方法的典型用法代碼示例。如果您正苦於以下問題:Python config.lr方法的具體用法?Python config.lr怎麽用?Python config.lr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在config.config的用法示例。


在下文中一共展示了config.lr方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: logInit

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def logInit():
    with open(config.logFile(), "a+") as outFile:
        writeline(outFile, config.expName)
        headers = ["epoch", "trainAcc", "valAcc", "trainLoss", "valLoss"]
        if config.evalTrain:
            headers += ["evalTrainAcc", "evalTrainLoss"]
        if config.extra:
            if config.evalTrain:
                headers += ["thAcc", "thLoss"]
            headers += ["vhAcc", "vhLoss"]
        headers += ["time", "lr"]

        writelist(outFile, headers)
        # lr assumed to be last

# Writes log record to file 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:18,代碼來源:main.py

示例2: loadWeights

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def loadWeights(sess, saver, init):
    if config.restoreEpoch > 0 or config.restore:
        # restore last epoch only if restoreEpoch isn't set
        if config.restoreEpoch == 0:
            # restore last logged epoch
            config.restoreEpoch, config.lr = lastLoggedEpoch()
        print(bcolored("Restoring epoch {} and lr {}".format(config.restoreEpoch, config.lr),"cyan"))
        print(bcolored("Restoring weights", "blue"))
        saver.restore(sess, config.weightsFile(config.restoreEpoch))
        epoch = config.restoreEpoch
    else:
        print(bcolored("Initializing weights", "blue"))
        sess.run(init)
        logInit()
        epoch = 0

    return epoch 

###################################### training / evaluation ######################################
# Chooses data to train on (main / extra) data. 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:22,代碼來源:main.py

示例3: improveEnough

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def improveEnough(curr, prior, lr):
    prevRes = prior["prev"]["res"]
    currRes = curr["res"]

    if prevRes is None:
        return True

    prevTrainLoss = prevRes["train"]["loss"]
    currTrainLoss = currRes["train"]["loss"]
    lossDiff = prevTrainLoss - currTrainLoss
    
    notImprove = ((lossDiff < 0.015 and prevTrainLoss < 0.5 and lr > 0.00002) or \
                  (lossDiff < 0.008 and prevTrainLoss < 0.15 and lr > 0.00001) or \
                  (lossDiff < 0.003 and prevTrainLoss < 0.10 and lr > 0.000005))
                  #(prevTrainLoss < 0.2 and config.lr > 0.000015)
    
    return not notImprove 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:19,代碼來源:main.py

示例4: logRecord

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def logRecord(epoch, epochTime, lr, trainRes, evalRes, extraEvalRes):
    with open(config.logFile(), "a+") as outFile:
        record = [epoch, trainRes["acc"], evalRes["val"]["acc"], trainRes["loss"], evalRes["val"]["loss"]]
        if config.evalTrain:
            record += [evalRes["evalTrain"]["acc"], evalRes["evalTrain"]["loss"]]
        if config.extra:
            if config.evalTrain:
                record += [extraEvalRes["evalTrain"]["acc"], extraEvalRes["evalTrain"]["loss"]]
            record += [extraEvalRes["val"]["acc"], extraEvalRes["val"]["loss"]]
        record += [epochTime, lr]

        writelist(outFile, record)

# Gets last logged epoch and learning rate 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:16,代碼來源:main.py

示例5: lastLoggedEpoch

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def lastLoggedEpoch():
    with open(config.logFile(), "r") as inFile:
        lastLine = list(inFile)[-1].split(",") 
    epoch = int(lastLine[0])
    lr = float(lastLine[-1])   
    return epoch, lr 

################################## printing, output and analysis ##################################

# Analysis by type 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:12,代碼來源:main.py

示例6: createFeedDict

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def createFeedDict(self, data, images, train):
        feedDict = {
            self.questionsIndicesAll: data["questions"],
            self.questionLengthsAll: data["questionLengths"],
            self.imagesPlaceholder: images["images"],
            self.answersIndicesAll: data["answers"],
            
            self.dropouts["encInput"]: config.encInputDropout if train else 1.0,
            self.dropouts["encState"]: config.encStateDropout if train else 1.0,
            self.dropouts["stem"]: config.stemDropout if train else 1.0,
            self.dropouts["question"]: config.qDropout if train else 1.0, #_
            self.dropouts["memory"]: config.memoryDropout if train else 1.0,
            self.dropouts["read"]: config.readDropout if train else 1.0, #_
            self.dropouts["write"]: config.writeDropout if train else 1.0,
            self.dropouts["output"]: config.outputDropout if train else 1.0,
            # self.dropouts["question"]Out: config.qDropoutOut if train else 1.0,
            # self.dropouts["question"]MAC: config.qDropoutMAC if train else 1.0,

            self.lr: config.lr,
            self.train: train
        }

        # if config.tempDynamic:
        #     feedDict[self.tempAnnealRate] = tempAnnealRate          

        return feedDict

    # Splits data to a specific GPU (tower) for parallelization 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:30,代碼來源:model.py

示例7: addOptimizerOp

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def addOptimizerOp(self): 
        with tf.variable_scope("trainAddOptimizer"):            
            self.globalStep = tf.Variable(0, dtype = tf.int32, trainable = False, name = "globalStep") # init to 0 every run?
            optimizer = tf.train.AdamOptimizer(learning_rate = self.lr)

        return optimizer 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:8,代碼來源:model.py

示例8: optimizer

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def optimizer(self):
        lr = tf.get_variable('learning_rate', initializer=FLAGS.lr * (FLAGS.batch / 256.0),
                             trainable=False)
        if FLAGS.optimizer == 'momentum':
            opt = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
        else:
            assert FLAGS.optimizer == 'adam'
            opt = tf.train.AdamOptimizer(lr)
        return opt 
開發者ID:LiYingwei,項目名稱:Regional-Homogeneity,代碼行數:11,代碼來源:train.py

示例9: get_config

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def get_config(model):
    nr_tower = max(get_num_gpu(), 1)
    assert FLAGS.batch % nr_tower == 0
    batch = FLAGS.batch // nr_tower

    logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))

    data = QueueInput(get_dataflow(FLAGS.train_list_filename, batch))

    # learning rate
    START_LR = FLAGS.lr
    BASE_LR = START_LR * (FLAGS.batch / 256.0)
    lr_list = []
    for idx, decay_point in enumerate(FLAGS.lr_decay_points):
        lr_list.append((decay_point, BASE_LR * 0.1 ** idx))
    callbacks = [
        ScopeModelSaver(checkpoint_dir=FLAGS.RHP_savepath, scope='RHP'),
        EstimatedTimeLeft(),
        ScheduledHyperParamSetter('learning_rate', lr_list),
    ]

    if get_num_gpu() > 0:
        callbacks.append(GPUUtilizationTracker())

    return TrainConfig(
        model=model,
        data=data,
        callbacks=callbacks,
        steps_per_epoch=FLAGS.steps_per_epoch // FLAGS.batch,
        max_epoch=FLAGS.max_epoch,
        session_init=MultipleRestore()
    ) 
開發者ID:LiYingwei,項目名稱:Regional-Homogeneity,代碼行數:34,代碼來源:train.py

示例10: renew_everything

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def renew_everything(self):
        # renew dataloader.
        self.loader = DL.dataloader(config)
        self.loader.renew(min(floor(self.resl), self.max_resl))
        
        # define tensors
        self.z = torch.FloatTensor(self.loader.batchsize, self.nz)
        self.x = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize)
        self.x_tilde = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize)
        self.real_label = torch.FloatTensor(self.loader.batchsize).fill_(1)
        self.fake_label = torch.FloatTensor(self.loader.batchsize).fill_(0)
		
        # enable cuda
        if self.use_cuda:
            self.z = self.z.cuda()
            self.x = self.x.cuda()
            self.x_tilde = self.x.cuda()
            self.real_label = self.real_label.cuda()
            self.fake_label = self.fake_label.cuda()
            torch.cuda.manual_seed(config.random_seed)

        # wrapping autograd Variable.
        self.x = Variable(self.x)
        self.x_tilde = Variable(self.x_tilde)
        self.z = Variable(self.z)
        self.real_label = Variable(self.real_label)
        self.fake_label = Variable(self.fake_label)
        
        # ship new model to cuda.
        if self.use_cuda:
            self.G = self.G.cuda()
            self.D = self.D.cuda()
        
        # optimizer
        betas = (self.config.beta1, self.config.beta2)
        if self.optimizer == 'adam':
            self.opt_g = Adam(filter(lambda p: p.requires_grad, self.G.parameters()), lr=self.lr, betas=betas, weight_decay=0.0)
            self.opt_d = Adam(filter(lambda p: p.requires_grad, self.D.parameters()), lr=self.lr, betas=betas, weight_decay=0.0) 
開發者ID:nashory,項目名稱:pggan-pytorch,代碼行數:40,代碼來源:trainer.py

示例11: renew_everything

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def renew_everything(self):
        '''Renew the dataloader
        '''
        self.loader = dl.dataloader(self.config)
        self.loader.renew(min(floor(self.resl), self.max_resl))

        # Define tensors
        self.z = torch.FloatTensor(self.loader.batchsize, self.nz)
        self.x = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize)
        self.x_tilde = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize)
        self.real_label = torch.FloatTensor(self.loader.batchsize).fill_(1)
        self.fake_label = torch.FloatTensor(self.loader.batchsize).fill_(0)

        # Enable CUDA
        if self.use_cuda:
            self.z = self.z.cuda()
            self.x = self.x.cuda()
            self.x_tilde = self.x_tilde.cuda()
            self.real_label = self.real_label.cuda()
            self.fake_label = self.fake_label.cuda()
            torch.cuda.manual_seed(config.random_seed)

        # Wrapping `autograd.Variable`
        self.x = Variable(self.x)
        self.x_tilde = Variable(self.x_tilde)
        self.z = Variable(self.z)
        self.real_label = Variable(self.real_label)
        self.fake_label = Variable(self.fake_label)

        # Ship new model to CUDA
        if self.use_cuda:
            self.G = self.G.cuda()
            self.D = self.D.cuda()

        # Setup the optimizer
        betas = (self.config.beta1, self.config.beta2)
        if self.optimizer == 'adam':
            self.opt_g = Adam(filter(lambda p: p.requires_grad, self.G.parameters()), lr=self.lr, betas=betas, weight_decay=0.0)
            self.opt_d = Adam(filter(lambda p: p.requires_grad, self.D.parameters()), lr=self.lr, betas=betas, weight_decay=0.0) 
開發者ID:rahulbhalley,項目名稱:progressive-growing-of-gans.pytorch,代碼行數:41,代碼來源:pggan.py

示例12: addPlaceholders

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def addPlaceholders(self):
        with tf.variable_scope("Placeholders"):
            ## data
            # questions            
            self.questionsIndicesAll = tf.placeholder(tf.int32, shape = (None, None))
            self.questionLengthsAll = tf.placeholder(tf.int32, shape = (None, ))

            # images
            # put image known dimension as last dim?
            self.imagesPlaceholder = tf.placeholder(tf.float32, shape = (None, None, None, None))
            self.imagesAll = tf.transpose(self.imagesPlaceholder, (0, 2, 3, 1))
            # self.imageH = tf.shape(self.imagesAll)[1]
            # self.imageW = tf.shape(self.imagesAll)[2]

            # answers
            self.answersIndicesAll = tf.placeholder(tf.int32, shape = (None, ))

            ## optimization
            self.lr = tf.placeholder(tf.float32, shape = ())
            self.train = tf.placeholder(tf.bool, shape = ())
            self.batchSizeAll = tf.shape(self.questionsIndicesAll)[0]

            ## dropouts
            # TODO: change dropouts to be 1 - current
            self.dropouts = {
                "encInput": tf.placeholder(tf.float32, shape = ()),
                "encState": tf.placeholder(tf.float32, shape = ()),
                "stem": tf.placeholder(tf.float32, shape = ()),
                "question": tf.placeholder(tf.float32, shape = ()),
                # self.dropouts["question"]Out = tf.placeholder(tf.float32, shape = ())
                # self.dropouts["question"]MAC = tf.placeholder(tf.float32, shape = ())
                "read": tf.placeholder(tf.float32, shape = ()),
                "write": tf.placeholder(tf.float32, shape = ()),
                "memory": tf.placeholder(tf.float32, shape = ()),
                "output": tf.placeholder(tf.float32, shape = ())
            }

            # batch norm params
            self.batchNorm = {"decay": config.bnDecay, "train": self.train}

            # if config.parametricDropout:
            #     self.dropouts["question"] = parametricDropout("qDropout", self.train)
            #     self.dropouts["read"] = parametricDropout("readDropout", self.train)
            # else:
            #     self.dropouts["question"] = self.dropouts["_q"]
            #     self.dropouts["read"] = self.dropouts["_read"]
            
            # if config.tempDynamic:
            #     self.tempAnnealRate = tf.placeholder(tf.float32, shape = ())

            self.H, self.W, self.imageInDim = config.imageDims

    # Feeds data into placeholders. See addPlaceholders method for further details. 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:55,代碼來源:model.py

示例13: __init__

# 需要導入模塊: from config import config [as 別名]
# 或者: from config.config import lr [as 別名]
def __init__(self, config):
        self.config = config
        
        if torch.cuda.is_available():
            self.use_cuda = True
            torch.set_default_tensor_type('torch.cuda.FloatTensor')
        else:
            self.use_cuda = False
            torch.set_default_tensor_type('torch.FloatTensor')

        self.nz = config.nz
        self.optimizer = config.optimizer
        self.resl = 2       # we start with resolution 2^2 = 4
        self.lr = config.lr
        self.eps_drift = config.eps_drift
        self.smoothing = config.smoothing
        self.max_resl = config.max_resl
        self.trns_tick = config.trns_tick
        self.stab_tick = config.stab_tick
        self.TICK = config.TICK
        self.global_iter = 0
        self.global_tick = 0
        self.kimgs = 0
        self.stack = 0
        self.epoch = 0
        self.fadein = {'gen': None, 'dis': None}
        self.complete = {'gen': 0, 'dis': 0}
        self.phase = 'init'
        self.flag_flush_gen = False
        self.flag_flush_dis = False
        self.flag_add_noise = self.config.flag_add_noise
        self.flag_add_drift = self.config.flag_add_drift

        # Network settings
        self.G = Generator(config)
        print('Generator architecture:\n{}'.format(self.G.model))
        self.D = Discriminator(config)
        print('Discriminator architecture:\n{}'.format(self.D.model))
        self.criterion = nn.MSELoss()

        if self.use_cuda:
            self.criterion = self.criterion.cuda()
            torch.cuda.manual_seed(config.random_seed)
            if config.n_gpu == 1:
                self.G = nn.DataParallel(self.G).cuda(device=0)
                self.D = nn.DataParallel(self.D).cuda(device=0)
            else:
                gpus = []
                for i in range(config.n_gpu):
                    gpus.append(i)
                self.G = nn.DataParallel(self.G, device_ids=gpus).cuda()
                self.D = nn.DataParallel(self.D, device_ids=gpus).cuda()

        # Define tensors, ship model to cuda, and get dataloader
        self.renew_everything()

        # Tensorboard
        self.use_tb = config.use_tb
        if self.use_tb:
            self.tb = tensorboard.tf_recorder() 
開發者ID:rahulbhalley,項目名稱:progressive-growing-of-gans.pytorch,代碼行數:62,代碼來源:pggan.py


注:本文中的config.config.lr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。