當前位置: 首頁>>代碼示例>>Python>>正文


Python cfg.lr方法代碼示例

本文整理匯總了Python中config.cfg.lr方法的典型用法代碼示例。如果您正苦於以下問題:Python cfg.lr方法的具體用法?Python cfg.lr怎麽用?Python cfg.lr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在config.cfg的用法示例。


在下文中一共展示了cfg.lr方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def __init__(self):
        self.reader=Image_reader(mode='vedio')
        self.model_dir=cfg.model_dir
        self.vedio_dir=cfg.vedio_dir
        self.vedio_name=cfg.vedio_name
        self.anchor_op=Anchor(17,17)
        self.anchors=self.anchor_op.anchors
        self.anchors=self.anchor_op.corner_to_center(self.anchors)
        self.penalty_k=cfg.penalty_k
        self.window_influence=cfg.window_influence
        self.lr=cfg.lr
        #===================init-parameter==================
        self.selectingObject = False
        self.initTracking = False
        self.onTracking = False
        self.ix, self.iy, self.cx, self.cy = -1, -1, -1, -1
        self.w, self.h = 0, 0
        self.inteval = 1
        self.duration = 0.01
        self.select=True
        #===================init-parameter================== 
開發者ID:makalo,項目名稱:Siamese-RPN-tensorflow,代碼行數:23,代碼來源:vedio_test.py

示例2: recover

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def recover(self,img,box,offset,ratio,pre_box,score):
        #label=[c_x,c_y,w,h]
        box[2]=box[2]*ratio
        box[3]=box[3]*ratio
        box[0]=box[0]*ratio+offset[0]
        box[1]=box[1]*ratio+offset[1]


        if score<0.9:
            box[2] = pre_box[2]
            box[3] = pre_box[3]
        else:
            box[2] = pre_box[2] * (1 - self.lr) + box[2] * self.lr
            box[3] = pre_box[3] * (1 - self.lr) + box[3] * self.lr

        note=np.zeros((5),dtype=np.float32)
        note[0:4]=box
        note[4]=score
        self.note.append(note)

        box[0]=int(box[0]-(box[2]-1)/2)
        box[1]=int(box[1]-(box[3]-1)/2)
        box[2]=round(box[0]+(box[2]))
        box[3]=round(box[1]+(box[3]))
        # #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
        # cv2.rectangle(img,(int(box[0]),int(box[1])),(int(box[2]),int(box[3])),(255,0,0),1)
        # cv2.imshow('ori',img)
        # cv2.waitKey(0)
        # #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
        return box#[x1,y1,x2,y2] 
開發者ID:makalo,項目名稱:Siamese-RPN-tensorflow,代碼行數:32,代碼來源:vedio_test.py

示例3: __init__

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def __init__(self):
        self.reader=Image_reader(img_path=cfg.img_path,label_path=cfg.label_path)
        self.model_dir=cfg.model_dir
        self.anchor_op=Anchor(17,17)
        self.anchors=self.anchor_op.anchors
        self.anchors=self.anchor_op.corner_to_center(self.anchors)
        self.penalty_k=cfg.penalty_k
        self.window_influence=cfg.window_influence
        self.lr=cfg.lr
        self.vedio_dir=cfg.vedio_dir
        self.vedio_name=cfg.vedio_name 
開發者ID:makalo,項目名稱:Siamese-RPN-tensorflow,代碼行數:13,代碼來源:test.py

示例4: get_optimizer

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def get_optimizer(self, model):
        
        optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr)
        return optimizer 
開發者ID:mks0601,項目名稱:3DMPPE_POSENET_RELEASE,代碼行數:6,代碼來源:base.py

示例5: set_lr

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def set_lr(self, epoch):
        for e in cfg.lr_dec_epoch:
            if epoch < e:
                break
        if epoch < cfg.lr_dec_epoch[-1]:
            idx = cfg.lr_dec_epoch.index(e)
            for g in self.optimizer.param_groups:
                g['lr'] = cfg.lr / (cfg.lr_dec_factor ** idx)
        else:
            for g in self.optimizer.param_groups:
                g['lr'] = cfg.lr / (cfg.lr_dec_factor ** len(cfg.lr_dec_epoch)) 
開發者ID:mks0601,項目名稱:3DMPPE_POSENET_RELEASE,代碼行數:13,代碼來源:base.py

示例6: get_lr

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def get_lr(self):
        for g in self.optimizer.param_groups:
            cur_lr = g['lr']

        return cur_lr 
開發者ID:mks0601,項目名稱:3DMPPE_POSENET_RELEASE,代碼行數:7,代碼來源:base.py

示例7: get_optimizer

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def get_optimizer():
    if cfg.optimizer == 'sgd':
        opt = SGD(lr=cfg.lr, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
    elif cfg.optimizer == 'adam':
        opt = Adam(lr=cfg.lr)
    else:
        raise ValueError('Wrong optimizer name')
    return opt 
開發者ID:kurapan,項目名稱:CRNN,代碼行數:10,代碼來源:train.py

示例8: get_optimizer

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def get_optimizer(self, model):
        optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr)
        return optimizer 
開發者ID:mks0601,項目名稱:3DMPPE_ROOTNET_RELEASE,代碼行數:5,代碼來源:base.py

示例9: get_lr

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def get_lr(self):
        for g in self.optimizer.param_groups:
            cur_lr = g['lr']
        return cur_lr 
開發者ID:mks0601,項目名稱:3DMPPE_ROOTNET_RELEASE,代碼行數:6,代碼來源:base.py

示例10: main

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def main(args):
    # create checkpoint dir
    if not isdir(args.checkpoint):
        mkdir_p(args.checkpoint)

    # create model
    model = network.__dict__[cfg.model](cfg.output_shape, cfg.num_class, pretrained = True)
    model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion1 = torch.nn.MSELoss().cuda() # for Global loss
    criterion2 = torch.nn.MSELoss(reduce=False).cuda() # for refine loss
    optimizer = torch.optim.Adam(model.parameters(),
                                lr = cfg.lr,
                                weight_decay=cfg.weight_decay)
    
    if args.resume:
        if isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            pretrained_dict = checkpoint['state_dict']
            model.load_state_dict(pretrained_dict)
            args.start_epoch = checkpoint['epoch']
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
            logger = Logger(join(args.checkpoint, 'log.txt'), resume=True)
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))
    else:        
        logger = Logger(join(args.checkpoint, 'log.txt'))
        logger.set_names(['Epoch', 'LR', 'Train Loss'])

    cudnn.benchmark = True
    print('    Total params: %.2fMB' % (sum(p.numel() for p in model.parameters())/(1024*1024)*4))

    train_loader = torch.utils.data.DataLoader(
        MscocoMulti(cfg),
        batch_size=cfg.batch_size*args.num_gpus, shuffle=True,
        num_workers=args.workers, pin_memory=True) 

    for epoch in range(args.start_epoch, args.epochs):
        lr = adjust_learning_rate(optimizer, epoch, cfg.lr_dec_epoch, cfg.lr_gamma)
        print('\nEpoch: %d | LR: %.8f' % (epoch + 1, lr)) 

        # train for one epoch
        train_loss = train(train_loader, model, [criterion1, criterion2], optimizer)
        print('train_loss: ',train_loss)

        # append logger file
        logger.append([epoch + 1, lr, train_loss])

        save_model({
            'epoch': epoch + 1,
            'state_dict': model.state_dict(),
            'optimizer' : optimizer.state_dict(),
        }, checkpoint=args.checkpoint)

    logger.close() 
開發者ID:GengDavid,項目名稱:pytorch-cpn,代碼行數:61,代碼來源:train.py

示例11: nms

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def nms(self,img,scores,delta,gt_p):
        img=(img*255).astype(np.uint8)
        target_sz=gt_p[2:]
        score=scores[:,1]
        # #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
        # b=self.anchor_op.center_to_corner(gt_p.reshape((1,4)))
        # cv2.rectangle(img,(int(b[0][0]),int(b[0][1])),(int(b[0][2]),int(b[0][3])),(0,255,0),1)
        # #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
        bboxes=np.zeros_like(delta)
        bboxes[:,0]=delta[:,0]*self.anchors[:,2]+self.anchors[:,0]
        bboxes[:,1]=delta[:,1]*self.anchors[:,3]+self.anchors[:,1]
        bboxes[:,2]=np.exp(delta[:,2])*self.anchors[:,2]
        bboxes[:,3]=np.exp(delta[:,3])*self.anchors[:,3]#[x,y,w,h]
        def change(r):
            return np.maximum(r, 1./r)
        def sz(w, h):
            pad = (w + h) * 0.5
            sz2 = (w + pad) * (h + pad)
            return np.sqrt(sz2)
        def sz_wh(wh):
            pad = (wh[0] + wh[1]) * 0.5
            sz2 = (wh[0] + pad) * (wh[1] + pad)
            return np.sqrt(sz2)

        # size penalty
        s_c = change(sz(bboxes[:,2], bboxes[:,3]) / (sz_wh(target_sz)))  # scale penalty
        r_c = change((target_sz[0] / target_sz[1]) / (bboxes[:,2] / bboxes[:,3]))  # ratio penalty

        penalty = np.exp(-(r_c * s_c - 1.) * self.penalty_k)
        pscore = penalty * score


        # window float
        pscore = pscore * (1 - self.window_influence) + self.window * self.window_influence
        # #==================debug=====================
        # pscore = score
        # #==================debug=====================
        best_pscore_id = np.argmax(pscore)
        best_pscore = np.max(pscore)
        print(best_pscore)

        self.lr = penalty[best_pscore_id] * score[best_pscore_id] * self.lr
        bbox=bboxes[best_pscore_id].reshape((1,4))#[x,y,w,h]
        # #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
        # b=self.anchor_op.center_to_corner(bbox)
        # cv2.rectangle(img,(int(b[0][0]),int(b[0][1])),(int(b[0][2]),int(b[0][3])),(255,0,0),1)
        # cv2.imshow('resize',img)
        # cv2.waitKey(0)
        # #+++++++++++++++++++++debug++++++++++++++++++++++++++++++

        return bbox[0],best_pscore 
開發者ID:makalo,項目名稱:Siamese-RPN-tensorflow,代碼行數:53,代碼來源:vedio_test.py

示例12: nms

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import lr [as 別名]
def nms(self,img,scores,delta,gt_p):
        img=(img*255).astype(np.uint8)
        target_sz=gt_p[2:]
        score=scores[:,1]

        bboxes=np.zeros_like(delta)
        bboxes[:,0]=delta[:,0]*self.anchors[:,2]+self.anchors[:,0]
        bboxes[:,1]=delta[:,1]*self.anchors[:,3]+self.anchors[:,1]
        bboxes[:,2]=np.exp(delta[:,2])*self.anchors[:,2]
        bboxes[:,3]=np.exp(delta[:,3])*self.anchors[:,3]#[x,y,w,h]
        def change(r):
            return np.maximum(r, 1./r)
        def sz(w, h):
            pad = (w + h) * 0.5
            sz2 = (w + pad) * (h + pad)
            return np.sqrt(sz2)
        def sz_wh(wh):
            pad = (wh[0] + wh[1]) * 0.5
            sz2 = (wh[0] + pad) * (wh[1] + pad)
            return np.sqrt(sz2)

        # size penalty
        s_c = change(sz(bboxes[:,2], bboxes[:,3]) / (sz_wh(target_sz)))  # scale penalty
        r_c = change((target_sz[0] / target_sz[1]) / (bboxes[:,2] / bboxes[:,3]))  # ratio penalty

        penalty = np.exp(-(r_c * s_c - 1.) * self.penalty_k)
        pscore = penalty * score

        # window float
        pscore = pscore * (1 - self.window_influence) + self.window * self.window_influence
        best_pscore_id = np.argmax(pscore)

        self.lr = penalty[best_pscore_id] * score[best_pscore_id] * self.lr
        bbox=bboxes[best_pscore_id].reshape((1,4))#[x,y,w,h]

        #+++++++++++++++++++++debug++++++++++++++++++++++++++++++
        # b=self.anchor_op.center_to_corner(bbox)
        # cv2.rectangle(img,(int(b[0][0]),int(b[0][1])),(int(b[0][2]),int(b[0][3])),(255,0,0),1)
        # cv2.imshow('resize',img)
        # cv2.waitKey(0)
        #+++++++++++++++++++++debug++++++++++++++++++++++++++++++

        return bbox[0] 
開發者ID:makalo,項目名稱:Siamese-RPN-tensorflow,代碼行數:45,代碼來源:test.py


注:本文中的config.cfg.lr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。