當前位置: 首頁>>代碼示例>>Python>>正文


Python config.cfg方法代碼示例

本文整理匯總了Python中config.cfg方法的典型用法代碼示例。如果您正苦於以下問題:Python config.cfg方法的具體用法?Python config.cfg怎麽用?Python config.cfg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在config的用法示例。


在下文中一共展示了config.cfg方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: evaluateimage

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def evaluateimage(file_path, mode, eval_model=None):

    #from plot_helpers import eval_and_plot_faster_rcnn
    if eval_model==None:
        print("Loading existing model from %s" % model_path)
        eval_model = load_model(model_path)
    img_shape = (num_channels, image_height, image_width)
    results_folder = globalvars['temppath']
    results=eval_faster_rcnn(eval_model, file_path, img_shape,
                              results_folder, feature_node_name, globalvars['classes'], mode,
                              drawUnregressedRois=cfg["CNTK"].DRAW_UNREGRESSED_ROIS,
                              drawNegativeRois=cfg["CNTK"].DRAW_NEGATIVE_ROIS,
                              nmsThreshold=cfg["CNTK"].RESULTS_NMS_THRESHOLD,
                              nmsConfThreshold=cfg["CNTK"].RESULTS_NMS_CONF_THRESHOLD,
                              bgrPlotThreshold=cfg["CNTK"].RESULTS_BGR_PLOT_THRESHOLD)
    return results 
開發者ID:karolzak,項目名稱:cntk-python-web-service-on-azure,代碼行數:18,代碼來源:evaluate.py

示例2: pre_process

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def pre_process(image, cfg=None, scale=1, meta=None):
    height, width = image.shape[0:2]
    new_height = int(height * scale)
    new_width  = int(width * scale)
    mean = np.array(cfg.DATASET.MEAN, dtype=np.float32).reshape(1, 1, 3)
    std = np.array(cfg.DATASET.STD, dtype=np.float32).reshape(1, 1, 3)

    inp_height, inp_width = cfg.MODEL.INPUT_H, cfg.MODEL.INPUT_W
    c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
    s = max(height, width) * 1.0


    trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
    resized_image = cv2.resize(image, (new_width, new_height))
    inp_image = cv2.warpAffine(
      resized_image, trans_input, (inp_width, inp_height),
      flags=cv2.INTER_LINEAR)
    inp_image = ((inp_image / 255. - mean) / std).astype(np.float32)

    images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width)
    images = torch.from_numpy(images)
    meta = {'c': c, 's': s, 
            'out_height': inp_height // cfg.MODEL.DOWN_RATIO, 
            'out_width': inp_width // cfg.MODEL.DOWN_RATIO}
    return images, meta 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:27,代碼來源:convert2onnx.py

示例3: get_record_id

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def get_record_id(domain, sub_domain):
    url = 'https://dnsapi.cn/Record.List'
    params = parse.urlencode({
        'login_token': cfg['login_token'],
        'format': 'json',
        'domain': domain
    })
    req = request.Request(url=url, data=params.encode('utf-8'), method='POST', headers=header())
    try:
        resp = request.urlopen(req).read().decode()
    except (error.HTTPError, error.URLError, socket.timeout):
        return None
    records = json.loads(resp).get('records', {})
    for item in records:
        if item.get('name') == sub_domain:
            return item.get('id')
    return None 
開發者ID:strahe,項目名稱:dnspod-ddns,代碼行數:19,代碼來源:ddns.py

示例4: update_record

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def update_record():
    url = 'https://dnsapi.cn/Record.Ddns'
    params = parse.urlencode({
        'login_token': cfg['login_token'],
        'format': 'json',
        'domain': cfg['domain'],
        'sub_domain': cfg['sub_domain'],
        'record_id': cfg['record_id'],
        'record_line': '默認'
    })
    req = request.Request(url=url, data=params.encode('utf-8'), method='POST', headers=header())
    resp = request.urlopen(req).read().decode()
    records = json.loads(resp)
    cfg['last_update_time'] = str(time.gmtime())
    logging.info("record updated: %s" % records)


# async def main(): 
開發者ID:strahe,項目名稱:dnspod-ddns,代碼行數:20,代碼來源:ddns.py

示例5: get_keypoints_from_bbox

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def get_keypoints_from_bbox(pose_model, image, bbox):
    x1,y1,w,h = bbox
    bbox_input = []
    bbox_input.append([x1, y1, x1+w, y1+h])
    inputs, origin_img, center, scale = pre_process(image, bbox_input, scores=1, cfg=cfg)
    with torch.no_grad():
        # compute output heatmap
        inputs = inputs[:,[2,1,0]]
        output = pose_model(inputs.cuda())
        # compute coordinate
        preds, maxvals = get_final_preds(
            cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale))

    # (N, 17, 3)
    result = np.concatenate((preds, maxvals), -1)
    return result 
開發者ID:lxy5513,項目名稱:cvToolkit,代碼行數:18,代碼來源:pose_estimation.py

示例6: get_keypoints

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def get_keypoints(human_model, pose_model, image, smooth=None):
    bboxs, scores = yolo_infrence(image, human_model)
    # bbox is coordinate location
    inputs, origin_img, center, scale = pre_process(image, bboxs, scores, cfg)

    with torch.no_grad():
        # compute output heatmap
        inputs = inputs[:,[2,1,0]]
        output = pose_model(inputs.cuda())
        # compute coordinate
        preds, maxvals = get_final_preds(
            cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale))

    # (N, 17, 3)
    result = np.concatenate((preds, maxvals), -1)
    return result 
開發者ID:lxy5513,項目名稱:cvToolkit,代碼行數:18,代碼來源:pose_estimation.py

示例7: _compute_targets

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois, gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
                / np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))

    return np.hstack((labels[:, np.newaxis], targets)).astype(np.float32, copy=False) 
開發者ID:karolzak,項目名稱:cntk-python-web-service-on-azure,代碼行數:16,代碼來源:proposal_target_layer.py

示例8: merge_outputs

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def merge_outputs(detections, cfg):
    results = {}
    results[1] = np.concatenate(
        [detection[1] for detection in detections], axis=0).astype(np.float32)
    if cfg.TEST.NMS or len(cfg.TEST.TEST_SCALES) > 1:
      soft_nms_39(results[1], Nt=0.5, method=2)
    results[1] = results[1].tolist()
    return results 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:10,代碼來源:convert2onnx.py

示例9: show_results

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def show_results(debugger, image, results, cfg):
    debugger.add_img(image, img_id='multi_pose')
    for bbox in results[1]:
      if bbox[4] > cfg.TEST.VIS_THRESH:
        debugger.add_coco_bbox(bbox[:4], 0, bbox[4], img_id='multi_pose')
        debugger.add_coco_hp(bbox[5:39], img_id='multi_pose')
    debugger.show_all_imgs(pause=True) 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:9,代碼來源:convert2onnx.py

示例10: main

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def main(cfg):

    model = create_model('res_50', cfg.MODEL.HEAD_CONV, cfg).cuda()

    weight_path = '/home/tensorboy/data/centerpose/trained_best_model/res_50_best_model.pth'
    state_dict = torch.load(weight_path, map_location=lambda storage, loc: storage)['state_dict']
    model.load_state_dict(state_dict)

    onnx_file_path = "./model/resnet50.onnx"
    
    #img = cv2.imread('test_image.jpg')
    image = cv2.imread('../images/image1.jpg')
    images, meta = pre_process(image, cfg, scale=1)

    model.cuda()
    model.eval()
    model.float()
    torch_input = images.cuda()
    print(torch_input.shape)
        
    torch.onnx.export(model, torch_input, onnx_file_path, verbose=False)
    sess = nxrun.InferenceSession(onnx_file_path)
    
    input_name = sess.get_inputs()[0].name
    label_name = sess.get_outputs()[0].name
    
    print(input_name)
    print(sess.get_outputs()[0].name)
    print(sess.get_outputs()[1].name)
    print(sess.get_outputs()[2].name)
    output_onnx = sess.run(None, {input_name:  images.cpu().data.numpy()})
    hm, wh, hps, reg, hm_hp, hp_offset = output_onnx  
    print(hm)
    print(len(output_onnx)) 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:36,代碼來源:convert2onnx.py

示例11: __init__

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def __init__(self, config_file, weight_file):

        update_config(cfg, config_file)
        self.cfg = cfg        
        self.trtmodel = TRTModel(weight_file) 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:7,代碼來源:centernet_tensorrt_engine.py

示例12: post_process

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def post_process(self, dets, meta, scale=1):
        dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])
        dets = self.multi_pose_post_process(
          dets.copy(), [meta['c']], [meta['s']],
          meta['out_height'], meta['out_width'])
        for j in range(1, self.cfg.MODEL.NUM_CLASSES + 1):
            dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 56)
            dets[0][j][:, :4] /= scale
            dets[0][j][:, 5:] /= scale
        return dets[0] 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:12,代碼來源:centernet_tensorrt_engine.py

示例13: postprocess

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def postprocess(self, hm, wh, hps, reg, hm_hp, hp_offset, meta):

        hm = hm.sigmoid_()
        hm_hp = hm_hp.sigmoid_()
        detections = self.multi_pose_decode(hm, wh, hps, reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=self.cfg.TEST.TOPK)
        dets = self.post_process(detections, meta, 1)
        return dets 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:9,代碼來源:centernet_tensorrt_engine.py

示例14: test_something

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def test_something(self):
        net = nn.Linear(10, 10)
        optimizer = make_optimizer(cfg, net)
        lr_scheduler = WarmupMultiStepLR(optimizer, [20, 40], warmup_iters=10)
        for i in range(50):
            lr_scheduler.step()
            for j in range(3):
                print(i, lr_scheduler.get_lr()[0])
                optimizer.step() 
開發者ID:JDAI-CV,項目名稱:fast-reid,代碼行數:11,代碼來源:lr_scheduler_test.py

示例15: get_args_from_command_line

# 需要導入模塊: import config [as 別名]
# 或者: from config import cfg [as 別名]
def get_args_from_command_line():

    parser = ArgumentParser(description='Parser of Runner of Network')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [cuda]', default=cfg.CONST.DEVICE, type=str)
    parser.add_argument('--phase', dest='phase', help='phase of CNN', default=cfg.NETWORK.PHASE, type=str)
    parser.add_argument('--weights', dest='weights', help='Initialize network from the weights file', default=cfg.CONST.WEIGHTS, type=str)
    parser.add_argument('--data', dest='data_path', help='Set dataset root_path', default=cfg.DIR.DATASET_ROOT, type=str)
    parser.add_argument('--out', dest='out_path', help='Set output path', default=cfg.DIR.OUT_PATH)
    args = parser.parse_args()
    return args 
開發者ID:sczhou,項目名稱:STFAN,代碼行數:12,代碼來源:runner.py


注:本文中的config.cfg方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。