當前位置: 首頁>>代碼示例>>Python>>正文


Python cfg.batch_size方法代碼示例

本文整理匯總了Python中config.cfg.batch_size方法的典型用法代碼示例。如果您正苦於以下問題:Python cfg.batch_size方法的具體用法?Python cfg.batch_size怎麽用?Python cfg.batch_size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在config.cfg的用法示例。


在下文中一共展示了cfg.batch_size方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _make_batch_generator

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def _make_batch_generator(self):
        # data load and construct batch generator
        self.logger.info("Creating dataset...")
        trainset_loader = []
        for i in range(len(cfg.trainset)):
            if i > 0:
                ref_joints_name = trainset_loader[0].joints_name
            else:
                ref_joints_name = None
            trainset_loader.append(DatasetLoader(eval(cfg.trainset[i])("train"), ref_joints_name, True, transforms.Compose([\
                                                                                                        transforms.ToTensor(),
                                                                                                        transforms.Normalize(mean=cfg.pixel_mean, std=cfg.pixel_std)]\
                                                                                                        )))
        self.joint_num = trainset_loader[0].joint_num

        trainset_loader = MultipleDatasets(trainset_loader)
        self.itr_per_epoch = math.ceil(len(trainset_loader) / cfg.num_gpus / cfg.batch_size)
        self.batch_generator = DataLoader(dataset=trainset_loader, batch_size=cfg.num_gpus*cfg.batch_size, shuffle=True, num_workers=cfg.num_thread, pin_memory=True) 
開發者ID:mks0601,項目名稱:3DMPPE_POSENET_RELEASE,代碼行數:20,代碼來源:base.py

示例2: get_generators

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def get_generators():
    train_generator = TrainGenerator(base_dir=cfg.base_dir, 
                                     annotation_file=os.path.join(cfg.base_dir, 'annotation_train.txt'),
                                     batch_size=cfg.batch_size,
                                     img_size=(cfg.width, cfg.height),
                                     nb_channels=cfg.nb_channels,
                                     timesteps=cfg.timesteps,
                                     label_len=cfg.label_len,
                                     characters=cfg.characters)
    val_generator = ValGenerator(base_dir=cfg.base_dir,
                                 annotation_file=os.path.join(cfg.base_dir, 'annotation_val.txt'),
                                 batch_size=5000,
                                 img_size=(cfg.width, cfg.height),
                                 nb_channels=cfg.nb_channels,
                                 timesteps=cfg.timesteps,
                                 label_len=cfg.label_len,
                                 characters=cfg.characters)
    return train_generator, val_generator 
開發者ID:kurapan,項目名稱:CRNN,代碼行數:20,代碼來源:train.py

示例3: make_data

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def make_data(self):
        from COCOAllJoints import COCOJoints
        from dataset import Preprocessing

        d = COCOJoints()
        train_data, _ = d.load_data(cfg.min_kps)

        from tfflat.data_provider import DataFromList, MultiProcessMapDataZMQ, BatchData, MapData
        dp = DataFromList(train_data)
        if cfg.dpflow_enable:
            dp = MultiProcessMapDataZMQ(dp, cfg.nr_dpflows, Preprocessing)
        else:
            dp = MapData(dp, Preprocessing)
        dp = BatchData(dp, cfg.batch_size // cfg.nr_aug)
        dp.reset_state()
        dataiter = dp.get_data()

        return dataiter 
開發者ID:chenyilun95,項目名稱:tf-cpn,代碼行數:20,代碼來源:network.py

示例4: loss_ohem

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def loss_ohem(preds, labels):
    labels = tf.cast(labels, tf.int64)
    labels = tf.reshape(labels, (cfg.batch_size,))
    print('pre labels', labels.get_shape())
    labels = tf.one_hot(labels, cfg.classes)
    print('labels', labels.get_shape())
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=preds, labels=labels)
    print('cross_entropy', cross_entropy.get_shape())
    keep_num = tf.cast(cfg.batch_size * cfg.train.ohem_ratio, tf.int32)
    cross_entropy = tf.reshape(cross_entropy, (cfg.batch_size,))
    print('cross_entropy', cross_entropy.get_shape())
    _, k_index = tf.nn.top_k(cross_entropy, keep_num)
    loss = tf.gather(cross_entropy, k_index)
    print('ohem loss', loss.get_shape())

    return tf.reduce_mean(loss) 
開發者ID:vicwer,項目名稱:sense_classification,代碼行數:18,代碼來源:losses.py

示例5: kernel_tile

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def kernel_tile(input, kernel, stride):
    # output = tf.extract_image_patches(input, ksizes=[1, kernel, kernel, 1], strides=[1, stride, stride, 1], rates=[1, 1, 1, 1], padding='VALID')

    input_shape = input.get_shape()
    tile_filter = np.zeros(shape=[kernel, kernel, input_shape[3],
                                  kernel * kernel], dtype=np.float32)
    for i in range(kernel):
        for j in range(kernel):
            tile_filter[i, j, :, i * kernel + j] = 1.0

    tile_filter_op = tf.constant(tile_filter, dtype=tf.float32)
    output = tf.nn.depthwise_conv2d(input, tile_filter_op, strides=[
                                    1, stride, stride, 1], padding='VALID')
    output_shape = output.get_shape()
    output = tf.reshape(output, shape=[int(output_shape[0]), int(
        output_shape[1]), int(output_shape[2]), int(input_shape[3]), kernel * kernel])
    output = tf.transpose(output, perm=[0, 1, 2, 4, 3])

    return output

# input should be a tensor with size as [batch_size, caps_num_i, 16] 
開發者ID:www0wwwjs1,項目名稱:Matrix-Capsules-EM-Tensorflow,代碼行數:23,代碼來源:capsnet_em.py

示例6: mat_transform

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def mat_transform(input, caps_num_c, regularizer, tag=False):
    batch_size = int(input.get_shape()[0])
    caps_num_i = int(input.get_shape()[1])
    output = tf.reshape(input, shape=[batch_size, caps_num_i, 1, 4, 4])
    # the output of capsule is miu, the mean of a Gaussian, and activation, the sum of probabilities
    # it has no relationship with the absolute values of w and votes
    # using weights with bigger stddev helps numerical stability
    w = slim.variable('w', shape=[1, caps_num_i, caps_num_c, 4, 4], dtype=tf.float32,
                      initializer=tf.truncated_normal_initializer(mean=0.0, stddev=1.0),
                      regularizer=regularizer)

    w = tf.tile(w, [batch_size, 1, 1, 1, 1])
    output = tf.tile(output, [1, 1, caps_num_c, 1, 1])
    votes = tf.reshape(tf.matmul(output, w), [batch_size, caps_num_i, caps_num_c, 16])

    return votes 
開發者ID:www0wwwjs1,項目名稱:Matrix-Capsules-EM-Tensorflow,代碼行數:18,代碼來源:capsnet_em.py

示例7: vec_transform

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def vec_transform(input, caps_num_out, channel_num_out):
    batch_size = int(input.get_shape()[0])
    caps_num_in = int(input.get_shape()[1])
    channel_num_in = int(input.get_shape()[-1])

    w = slim.variable('w', shape=[1, caps_num_out, caps_num_in, channel_num_in, channel_num_out], dtype=tf.float32,
                      initializer=tf.random_normal_initializer(mean=0.0, stddev=0.01)) #

    w = tf.tile(w, [batch_size, 1, 1, 1, 1])
    output = tf.reshape(input, shape=[batch_size, 1, caps_num_in, 1, channel_num_in])
    output = tf.tile(output, [1, caps_num_out, 1, 1, 1])

    output = tf.reshape(tf.matmul(output, w), [batch_size, caps_num_out, caps_num_in, channel_num_out])

    return output

# input should be a tensor with size as [batch_size, caps_num_out, channel_num] 
開發者ID:www0wwwjs1,項目名稱:Matrix-Capsules-EM-Tensorflow,代碼行數:19,代碼來源:capsnet_dynamic_routing.py

示例8: dynamic_routing

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def dynamic_routing(input):
    batch_size = int(input.get_shape()[0])
    caps_num_in = int(input.get_shape()[2])
    caps_num_out = int(input.get_shape()[1])

    input_stopped = tf.stop_gradient(input, name='stop_gradient')

    b = tf.constant(np.zeros([batch_size, caps_num_out, caps_num_in, 1], dtype=np.float32))

    for r_iter in range(cfg.iter_routing):
        c = tf.nn.softmax(b, dim=1)
        if r_iter == cfg.iter_routing-1:
            s = tf.matmul(input, c, transpose_a=True)
            v = squash(tf.squeeze(s))
        else:
            s = tf.matmul(input_stopped, c, transpose_a=True)
            v = squash(tf.squeeze(s))
            b += tf.reduce_sum(tf.reshape(v, shape=[batch_size, caps_num_out, 1, -1])*input_stopped, axis=-1, keep_dims=True)

    return v 
開發者ID:www0wwwjs1,項目名稱:Matrix-Capsules-EM-Tensorflow,代碼行數:22,代碼來源:capsnet_dynamic_routing.py

示例9: evaluation

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def evaluation(model, supervisor, num_label):
    teX, teY, num_te_batch = load_data(cfg.dataset, cfg.batch_size, is_training=False)
    fd_test_acc = save_to()
    with supervisor.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
        supervisor.saver.restore(sess, tf.train.latest_checkpoint(cfg.logdir))
        tf.logging.info('Model restored!')

        test_acc = 0
        for i in tqdm(range(num_te_batch), total=num_te_batch, ncols=70, leave=False, unit='b'):
            start = i * cfg.batch_size
            end = start + cfg.batch_size
            acc = sess.run(model.accuracy, {model.X: teX[start:end], model.labels: teY[start:end]})
            test_acc += acc
        test_acc = test_acc / (cfg.batch_size * num_te_batch)
        fd_test_acc.write(str(test_acc))
        fd_test_acc.close()
        print('Test accuracy has been saved to ' + cfg.results + '/test_acc.csv') 
開發者ID:bourdakos1,項目名稱:capsule-networks,代碼行數:19,代碼來源:main.py

示例10: loss

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def loss(v_len, output, x, y):
    max_l = tf.square(tf.maximum(0., cfg.m_plus-v_len))
    max_r = tf.square(tf.maximum(0., v_len - cfg.m_minus))

    l_c = y*max_l+cfg.lambda_val * (1 - y) * max_r

    margin_loss = tf.reduce_mean(tf.reduce_sum(l_c, axis=1))

    origin = tf.reshape(x, shape=[cfg.batch_size, -1])
    reconstruction_err = tf.reduce_mean(tf.square(output-origin))

    total_loss = margin_loss+0.0005*reconstruction_err

    tf.losses.add_loss(total_loss)

    return total_loss 
開發者ID:bourdakos1,項目名稱:capsule-networks,代碼行數:18,代碼來源:capsnet_slim.py

示例11: evaluate

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def evaluate(model, data_loader):
    # Setting up model
    test_iterator = data_loader(cfg.batch_size, mode="test")
    inputs = data_loader.next_element["images"]
    labels = data_loader.next_element["labels"]
    model.create_network(inputs, labels)

    # Create files to save evaluating results
    fd = save_to(is_training=False)
    saver = tf.train.Saver()

    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        test_handle = sess.run(test_iterator.string_handle())
        saver.restore(sess, tf.train.latest_checkpoint(cfg.logdir))
        tf.logging.info('Model restored!')

        probs = []
        targets = []
        total_acc = 0
        n = 0
        while True:
            try:
                test_acc, prob, label = sess.run([model.accuracy, model.probs, labels], feed_dict={data_loader.handle: test_handle})
                probs.append(prob)
                targets.append(label)
                total_acc += test_acc
                n += 1
            except tf.errors.OutOfRangeError:
                break
        probs = np.concatenate(probs, axis=0)
        targets = np.concatenate(targets, axis=0).reshape((-1, 1))
        avg_acc = total_acc / n
        out_path = os.path.join(cfg.results_dir, 'prob_test.txt')
        np.savetxt(out_path, np.hstack((probs, targets)), fmt='%1.2f')
        print('Classification probability for each category has been saved to ' + out_path)
        fd["test_acc"].write(str(avg_acc))
        fd["test_acc"].close()
        out_path = os.path.join(cfg.results_dir, 'test_accuracy.txt')
        print('Test accuracy has been saved to ' + out_path) 
開發者ID:naturomics,項目名稱:CapsLayer,代碼行數:43,代碼來源:main.py

示例12: squash

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def squash(vector):
    '''Squashing function.
    Args:
        vector: A 4-D tensor with shape [batch_size, num_caps, vec_len, 1],
    Returns:
        A 4-D tensor with the same shape as vector but
        squashed in 3rd and 4th dimensions.
    '''
    vec_abs = tf.sqrt(tf.reduce_sum(tf.square(vector)))  # a scalar
    scalar_factor = tf.square(vec_abs) / (1 + tf.square(vec_abs))
    vec_squashed = scalar_factor * tf.divide(vector, vec_abs)  # element-wise
    return(vec_squashed) 
開發者ID:llSourcell,項目名稱:capsule_networks,代碼行數:14,代碼來源:capsLayer.py

示例13: get_batch_data

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def get_batch_data():
    trX, trY = load_mnist(cfg.dataset, cfg.is_training)

    data_queues = tf.train.slice_input_producer([trX, trY])
    X, Y = tf.train.shuffle_batch(data_queues, num_threads=cfg.num_threads,
                                  batch_size=cfg.batch_size,
                                  capacity=cfg.batch_size * 64,
                                  min_after_dequeue=cfg.batch_size * 32,
                                  allow_smaller_final_batch=False)

    return(X, Y) 
開發者ID:llSourcell,項目名稱:capsule_networks,代碼行數:13,代碼來源:utils.py

示例14: save_images

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def save_images(imgs, size, path):
    '''
    Args:
        imgs: [batch_size, image_height, image_width]
        size: a list with tow int elements, [image_height, image_width]
        path: the path to save images
    '''
    imgs = (imgs + 1.) / 2  # inverse_transform
    return(scipy.misc.imsave(path, mergeImgs(imgs, size))) 
開發者ID:llSourcell,項目名稱:capsule_networks,代碼行數:11,代碼來源:utils.py

示例15: loss

# 需要導入模塊: from config import cfg [as 別名]
# 或者: from config.cfg import batch_size [as 別名]
def loss(self):
        # 1. The margin loss

        # [batch_size, 10, 1, 1]
        # max_l = max(0, m_plus-||v_c||)^2
        max_l = tf.square(tf.maximum(0., cfg.m_plus - self.v_length))
        # max_r = max(0, ||v_c||-m_minus)^2
        max_r = tf.square(tf.maximum(0., self.v_length - cfg.m_minus))
        assert max_l.get_shape() == [cfg.batch_size, 10, 1, 1]

        # reshape: [batch_size, 10, 1, 1] => [batch_size, 10]
        max_l = tf.reshape(max_l, shape=(cfg.batch_size, -1))
        max_r = tf.reshape(max_r, shape=(cfg.batch_size, -1))

        # calc T_c: [batch_size, 10]
        # T_c = Y, is my understanding correct? Try it.
        T_c = self.Y
        # [batch_size, 10], element-wise multiply
        L_c = T_c * max_l + cfg.lambda_val * (1 - T_c) * max_r

        self.margin_loss = tf.reduce_mean(tf.reduce_sum(L_c, axis=1))

        # 2. The reconstruction loss
        orgin = tf.reshape(self.X, shape=(cfg.batch_size, -1))
        squared = tf.square(self.decoded - orgin)
        self.reconstruction_err = tf.reduce_mean(squared)

        # 3. Total loss
        self.total_loss = self.margin_loss + 0.0005 * self.reconstruction_err

        # Summary
        tf.summary.scalar('margin_loss', self.margin_loss)
        tf.summary.scalar('reconstruction_loss', self.reconstruction_err)
        tf.summary.scalar('total_loss', self.total_loss)
        recon_img = tf.reshape(self.decoded, shape=(cfg.batch_size, 28, 28, 1))
        tf.summary.image('reconstruction_img', recon_img)
        self.merged_sum = tf.summary.merge_all() 
開發者ID:llSourcell,項目名稱:capsule_networks,代碼行數:39,代碼來源:capsNet.py


注:本文中的config.cfg.batch_size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。