當前位置: 首頁>>代碼示例>>Python>>正文


Python cntk.transpose方法代碼示例

本文整理匯總了Python中cntk.transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.transpose方法的具體用法?Python cntk.transpose怎麽用?Python cntk.transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk的用法示例。


在下文中一共展示了cntk.transpose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: permute_dimensions

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def permute_dimensions(x, pattern):
    dims = len(int_shape(x))
    num_dynamic_axis = _get_dynamic_axis_num(x)
    if isinstance(pattern, list):
        current_layout = [i for i in range(dims)]
    else:
        current_layout = tuple([i for i in range(dims)])

    if num_dynamic_axis > 0 and pattern[:num_dynamic_axis] != current_layout[:num_dynamic_axis]:
        raise ValueError('CNTK backend: the permute pattern %s '
                         'requested permute on dynamic axis, '
                         'which is not supported. Please do permute '
                         'on static axis.' % pattern)

    axis = list(pattern)
    axis = axis[num_dynamic_axis:]
    axis = _normalize_axis(axis, x)
    return C.transpose(x, axis) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:20,代碼來源:cntk_backend.py

示例2: local_conv1d

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None):
    data_format = normalize_data_format(data_format)

    stride = strides[0]
    kernel_shape = int_shape(kernel)
    output_length, feature_dim, filters = kernel_shape

    xs = []
    for i in range(output_length):
        slice_length = py_slice(i * stride,
                                i * stride + kernel_size[0])
        xs.append(reshape(inputs[:, slice_length, :],
                          (-1, 1, feature_dim)))
    x_aggregate = concatenate(xs, axis=1)
    # transpose kernel to output_filters first, to apply broadcast
    weight = permute_dimensions(kernel, (2, 0, 1))
    # Shape: (batch, filters, output_length, input_length * kernel_size)
    output = x_aggregate * weight
    # Shape: (batch, filters, output_length)
    output = sum(output, axis=3)
    # Shape: (batch, output_length, filters)
    return permute_dimensions(output, (0, 2, 1)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:24,代碼來源:cntk_backend.py

示例3: _layer_Conv

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def _layer_Conv(self):
        self.add_body(0, """
def convolution(input, is_transpose, name, **kwargs):
    dim = __weights_dict[name]['weights'].ndim

    if is_transpose:
        weight = np.transpose(__weights_dict[name]['weights'], [dim - 2, dim - 1] + list(range(0, dim - 2)))
        kwargs.pop('groups', None)
    else:
        weight = np.transpose(__weights_dict[name]['weights'], [dim - 1, dim - 2] + list(range(0, dim - 2)))
    w = cntk.Parameter(init=weight, name=name + '_weight')

    input = cntk.transpose(input, [dim - 2] + list(range(0, dim - 2)))

    if is_transpose:
        layer = ops.convolution_transpose(w, input, **kwargs)
    else:
        layer = ops.convolution(w, input, **kwargs)
    if 'bias' in __weights_dict[name]:
        bias = np.reshape(__weights_dict[name]['bias'], [-1] + [1] * (dim - 2))
        b = cntk.Parameter(init=bias, name=name + '_bias')
        layer = layer + b
    layer = cntk.transpose(layer, list(range(1, dim - 1)) + [0])
    return layer
""") 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:27,代碼來源:cntk_emitter.py

示例4: local_conv1d

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None):
    if data_format is None:
        data_format = image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Unknown data_format ' + str(data_format))

    stride = strides[0]
    kernel_shape = int_shape(kernel)
    output_length, feature_dim, filters = kernel_shape

    xs = []
    for i in range(output_length):
        slice_length = slice(i * stride,
                             i * stride + kernel_size[0])
        xs.append(reshape(inputs[:, slice_length, :],
                          (-1, 1, feature_dim)))
    x_aggregate = concatenate(xs, axis=1)
    # transpose kernel to output_filters first, to apply broadcast
    weight = permute_dimensions(kernel, (2, 0, 1))
    # Shape: (batch, filters, output_length, input_length * kernel_size)
    output = x_aggregate * weight
    # Shape: (batch, filters, output_length)
    output = sum(output, axis=3)
    # Shape: (batch, output_length, filters)
    return permute_dimensions(output, (0, 2, 1)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:27,代碼來源:cntk_backend.py

示例5: dot

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def dot(x, y):
    if len(x.shape) > 2 or len(y.shape) > 2:
        y_shape = int_shape(y)
        if len(y_shape) > 2:
            permutation = [len(y_shape) - 2]
            permutation += list(range(len(y_shape) - 2))
            permutation += [len(y_shape) - 1]
            y = C.transpose(y, perm=permutation)
        return C.times(x, y, len(y_shape) - 1)
    else:
        return C.times(x, y) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:13,代碼來源:cntk_backend.py

示例6: batch_dot

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def batch_dot(x, y, axes=None):
    x_shape = int_shape(x)
    y_shape = int_shape(y)

    if isinstance(axes, int):
        axes = (axes, axes)
    if axes is None:
        # behaves like tf.batch_matmul as default
        axes = [len(x_shape) - 1, len(y_shape) - 2]
    if b_any([isinstance(a, (list, tuple)) for a in axes]):
        raise ValueError('Multiple target dimensions are not supported. ' +
                         'Expected: None, int, (int, int), ' +
                         'Provided: ' + str(axes))

    if len(x_shape) == 2 and len(y_shape) == 2:
        if axes[0] == axes[1]:
            result = sum(x * y, axis=axes[0], keepdims=True)
            return result if axes[0] == 1 else transpose(result)
        else:
            return sum(x * transpose(y), axis=axes[0], keepdims=True)
    else:
        if len(y_shape) == 2:
            y = expand_dims(y)

        normalized_axis = []
        normalized_axis.append(_normalize_axis(axes[0], x)[0])
        normalized_axis.append(_normalize_axis(axes[1], y)[0])
        # transpose
        i = normalized_axis[0]
        while i < len(x.shape) - 1:
            x = C.swapaxes(x, i, i + 1)
            i += 1
        i = normalized_axis[1]
        while i > 0:
            y = C.swapaxes(y, i, i - 1)
            i -= 1
        result = C.times(x, y, output_rank=(len(y.shape) - 1)
                         if len(y.shape) > 1 else 1)
        if len(y_shape) == 2:
            result = squeeze(result, -1)
        return result 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:43,代碼來源:cntk_backend.py

示例7: transpose

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def transpose(x):
    return C.swapaxes(x, 0, 1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:cntk_backend.py

示例8: depthwise_conv2d

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid',
                     data_format=None, dilation_rate=(1, 1)):
    data_format = normalize_data_format(data_format)

    x = _preprocess_conv2d_input(x, data_format)
    depthwise_kernel = _preprocess_conv2d_kernel(depthwise_kernel, data_format)
    depthwise_kernel = C.reshape(C.transpose(depthwise_kernel, (1, 0, 2, 3)),
                                 (-1, 1) + depthwise_kernel.shape[2:])
    padding = _preprocess_border_mode(padding)
    if dilation_rate == (1, 1):
        strides = (1,) + strides
        x = C.convolution(depthwise_kernel, x,
                          strides=strides,
                          auto_padding=[False, padding, padding],
                          groups=x.shape[0])
    else:
        if dilation_rate[0] != dilation_rate[1]:
            raise ValueError('CNTK Backend: non-square dilation_rate is '
                             'not supported.')
        if strides != (1, 1):
            raise ValueError('Invalid strides for dilated convolution')
        x = C.convolution(depthwise_kernel, x,
                          strides=dilation_rate[0],
                          auto_padding=[False, padding, padding],
                          groups=x.shape[0])
    return _postprocess_conv2d_output(x, data_format) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:28,代碼來源:cntk_backend.py

示例9: categorical_crossentropy

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
    # Here, unlike other backends, the tensors lack a batch dimension:
    axis_without_batch = -1 if axis == -1 else axis - 1
    output_dimensions = list(range(len(output.shape)))
    if axis_without_batch != -1 and axis_without_batch not in output_dimensions:
        raise ValueError(
            '{}{}{}'.format(
                'Unexpected channels axis {}. '.format(axis_without_batch),
                'Expected to be -1 or one of the axes of `output`, ',
                'which has {} dimensions.'.format(len(output.shape))))
    # If the channels are not in the last axis, move them to be there:
    if axis_without_batch != -1 and axis_without_batch != output_dimensions[-1]:
        permutation = output_dimensions[:axis_without_batch]
        permutation += output_dimensions[axis_without_batch + 1:]
        permutation += [axis_without_batch]
        output = C.transpose(output, permutation)
        target = C.transpose(target, permutation)
    if from_logits:
        result = C.cross_entropy_with_softmax(output, target)
        # cntk's result shape is (batch, 1), while keras expect (batch, )
        return C.reshape(result, ())
    else:
        # scale preds so that the class probas of each sample sum to 1
        output /= C.reduce_sum(output, axis=-1)
        # avoid numerical instability with epsilon clipping
        output = C.clip(output, epsilon(), 1.0 - epsilon())
        return -sum(target * C.log(output), axis=-1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:29,代碼來源:cntk_backend.py

示例10: _preprocess_conv2d_input

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def _preprocess_conv2d_input(x, data_format):
    if data_format == 'channels_last':
        # TF uses the last dimension as channel dimension,
        # instead of the 2nd one.
        # TH input shape: (samples, input_depth, rows, cols)
        # TF input shape: (samples, rows, cols, input_depth)
        x = C.transpose(x, (2, 0, 1))
    return x 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:10,代碼來源:cntk_backend.py

示例11: _preprocess_conv2d_kernel

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def _preprocess_conv2d_kernel(kernel, data_format):
    # As of Keras 2.0.0, all kernels are normalized
    # on the format `(rows, cols, input_depth, depth)`,
    # independently of `data_format`.
    # CNTK expects `(depth, input_depth, rows, cols)`.
    kernel = C.transpose(kernel, (3, 2, 0, 1))
    return kernel 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:cntk_backend.py

示例12: _postprocess_conv2d_output

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def _postprocess_conv2d_output(x, data_format):
    if data_format == 'channels_last':
        x = C.transpose(x, (1, 2, 0))
    return x 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:cntk_backend.py

示例13: _preprocess_conv3d_kernel

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def _preprocess_conv3d_kernel(kernel, dim_ordering):
    kernel = C.transpose(kernel, (4, 3, 0, 1, 2))
    return kernel 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:5,代碼來源:cntk_backend.py

示例14: _postprocess_conv3d_output

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def _postprocess_conv3d_output(x, dim_ordering):
    if dim_ordering == 'channels_last':
        x = C.transpose(x, (1, 2, 3, 0))
    return x 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:cntk_backend.py

示例15: _layer_Crop

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import transpose [as 別名]
def _layer_Crop(self):
        self.add_body(0, '''
def _crop(input, border, output_shape, **kwargs):
    dim = len(output_shape)
    output_shape = [output_shape[-1]] + output_shape[:-1]
    ref_tensor = np.zeros(shape=output_shape, dtype=np.float32)

    input = cntk.transpose(input, [dim - 1] + list(range(0, dim - 1)))
    layer = cntk.crop_manual(node_input=input, node_referent=ref_tensor, offset_x=border[0], offset_y=border[1])
    layer = cntk.transpose(layer, list(range(1, dim)) + [0])
    return layer
''') 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:14,代碼來源:cntk_emitter.py


注:本文中的cntk.transpose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。