當前位置: 首頁>>代碼示例>>Python>>正文


Python cntk.times方法代碼示例

本文整理匯總了Python中cntk.times方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.times方法的具體用法?Python cntk.times怎麽用?Python cntk.times使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk的用法示例。


在下文中一共展示了cntk.times方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: linear_layer

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def linear_layer(input_var, output_dim):
    input_dim = input_var.shape[0]

    weight = C.parameter(shape=(input_dim, output_dim))
    bias = C.parameter(shape=(output_dim))

    return bias + C.times(input_var, weight) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:9,代碼來源:feed_forward.py

示例2: linear_layer

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def linear_layer(input_var, output_dim):
    input_dim = input_var.shape[0]

    weight_param = C.parameter(shape=(input_dim, output_dim))
    bias_param = C.parameter(shape=(output_dim))

    return C.times(input_var, weight_param) + bias_param 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:9,代碼來源:logistic_regression.py

示例3: test_times_1

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def test_times_1():
    cntk_op = C.times([1, 2, 3], [[4], [5], [6]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py

示例4: test_times_2

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def test_times_2():
    cntk_op = C.times([[1, 2], [3, 4]], [[5, 6], [7, 8]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py

示例5: test_times_3

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def test_times_3():
    cntk_op = C.times([1, 2, 3], [[4, 5], [6, 7], [8, 9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py

示例6: test_times_5

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def test_times_5():
    cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7, 8], [9, 10], [11, 12]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py

示例7: test_times_6

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def test_times_6():
    cntk_op = C.times([[1, 2], [3, 4], [5, 6]], [[7, 8, 9], [10, 11, 12]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equiv(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py

示例8: dot

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def dot(x, y):
    if len(x.shape) > 2 or len(y.shape) > 2:
        y_shape = int_shape(y)
        if len(y_shape) > 2:
            permutation = [len(y_shape) - 2]
            permutation += list(range(len(y_shape) - 2))
            permutation += [len(y_shape) - 1]
            y = C.transpose(y, perm=permutation)
        return C.times(x, y, len(y_shape) - 1)
    else:
        return C.times(x, y) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:13,代碼來源:cntk_backend.py

示例9: batch_dot

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def batch_dot(x, y, axes=None):
    x_shape = int_shape(x)
    y_shape = int_shape(y)

    if isinstance(axes, int):
        axes = (axes, axes)
    if axes is None:
        # behaves like tf.batch_matmul as default
        axes = [len(x_shape) - 1, len(y_shape) - 2]
    if b_any([isinstance(a, (list, tuple)) for a in axes]):
        raise ValueError('Multiple target dimensions are not supported. ' +
                         'Expected: None, int, (int, int), ' +
                         'Provided: ' + str(axes))

    if len(x_shape) == 2 and len(y_shape) == 2:
        if axes[0] == axes[1]:
            result = sum(x * y, axis=axes[0], keepdims=True)
            return result if axes[0] == 1 else transpose(result)
        else:
            return sum(x * transpose(y), axis=axes[0], keepdims=True)
    else:
        if len(y_shape) == 2:
            y = expand_dims(y)

        normalized_axis = []
        normalized_axis.append(_normalize_axis(axes[0], x)[0])
        normalized_axis.append(_normalize_axis(axes[1], y)[0])
        # transpose
        i = normalized_axis[0]
        while i < len(x.shape) - 1:
            x = C.swapaxes(x, i, i + 1)
            i += 1
        i = normalized_axis[1]
        while i > 0:
            y = C.swapaxes(y, i, i - 1)
            i -= 1
        result = C.times(x, y, output_rank=(len(y.shape) - 1)
                         if len(y.shape) > 1 else 1)
        if len(y_shape) == 2:
            result = squeeze(result, -1)
        return result 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:43,代碼來源:cntk_backend.py

示例10: gather

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will update with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_classes = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_classes)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:cntk_backend.py

示例11: batch_dot

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import times [as 別名]
def batch_dot(x, y, axes=None):
    x_shape = int_shape(x)
    y_shape = int_shape(y)

    if isinstance(axes, int):
        axes = (axes, axes)
    if axes is None:
        # behaves like tf.batch_matmul as default
        axes = [len(x_shape) - 1, len(y_shape) - 2]

    if len(x_shape) == 2 and len(y_shape) == 2:
        return sum(x * y, axis=1, keepdims=True)
    else:
        if len(y_shape) == 2:
            y = expand_dims(y)

        normalized_axis = []
        normalized_axis.append(_normalize_axis(axes[0], x)[0])
        normalized_axis.append(_normalize_axis(axes[1], y)[0])
        # transpose
        i = normalized_axis[0]
        while i < len(x.shape) - 1:
            x = C.swapaxes(x, i, i + 1)
            i += 1
        i = normalized_axis[1]
        while i > 0:
            y = C.swapaxes(y, i, i - 1)
            i -= 1
        result = C.times(x, y, output_rank=(len(y.shape) - 1)
                         if len(y.shape) > 1 else 1)
        if len(y_shape) == 2:
            result = squeeze(result, -1)
        return result 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:35,代碼來源:cntk_backend.py


注:本文中的cntk.times方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。