本文整理匯總了Python中cntk.placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.placeholder方法的具體用法?Python cntk.placeholder怎麽用?Python cntk.placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cntk
的用法示例。
在下文中一共展示了cntk.placeholder方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_model
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def create_model(base_model_file, input_features, num_classes, dropout_rate = 0.5, freeze_weights = False):
# Load the pretrained classification net and find nodes
base_model = load_model(base_model_file)
feature_node = find_by_name(base_model, 'features')
beforePooling_node = find_by_name(base_model, "z.x.x.r")
#graph.plot(base_model, filename="base_model.pdf") # Write graph visualization
# Clone model until right before the pooling layer, ie. until including z.x.x.r
modelCloned = combine([beforePooling_node.owner]).clone(
CloneMethod.freeze if freeze_weights else CloneMethod.clone,
{feature_node: placeholder(name='features')})
# Center the input around zero and set model input.
# Do this early, to avoid CNTK bug with wrongly estimated layer shapes
feat_norm = input_features - constant(114)
model = modelCloned(feat_norm)
# Pool over all spatial dimensions and add dropout layer
avgPool = GlobalAveragePooling(name = "poolingLayer")(model)
if dropout_rate > 0:
avgPoolDrop = Dropout(dropout_rate)(avgPool)
else:
avgPoolDrop = avgPool
# Add new dense layer for class prediction
finalModel = Dense(num_classes, activation=None, name="prediction") (avgPoolDrop)
return finalModel
# Trains a transfer learning model
開發者ID:Azure-Samples,項目名稱:MachineLearningSamples-ImageClassificationUsingCntk,代碼行數:32,代碼來源:helpers_cntk.py
示例2: placeholder
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def placeholder(
shape=None,
ndim=None,
dtype=None,
sparse=False,
name=None,
dynamic_axis_num=1):
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
dynamic_dimension = C.FreeDimension if _get_cntk_version() >= 2.2 else C.InferredDimension
cntk_shape = [dynamic_dimension if s is None else s for s in shape]
cntk_shape = tuple(cntk_shape)
if dynamic_axis_num > len(cntk_shape):
raise ValueError('CNTK backend: creating placeholder with '
'%d dimension is not supported, at least '
'%d dimensions are needed.'
% (len(cntk_shape), dynamic_axis_num))
if name is None:
name = ''
cntk_shape = cntk_shape[dynamic_axis_num:]
x = C.input(
shape=cntk_shape,
dtype=_convert_string_dtype(dtype),
is_sparse=sparse,
name=name)
x._keras_shape = shape
x._uses_learning_phase = False
x._cntk_placeholder = True
return x
示例3: is_placeholder
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def is_placeholder(x):
"""Returns whether `x` is a placeholder.
# Arguments
x: A candidate placeholder.
# Returns
Boolean.
"""
return hasattr(x, '_cntk_placeholder') and x._cntk_placeholder
示例4: _is_input_shape_compatible
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def _is_input_shape_compatible(input, placeholder):
if hasattr(input, 'shape') and hasattr(placeholder, 'shape'):
num_dynamic = get_num_dynamic_axis(placeholder)
input_shape = input.shape[num_dynamic:]
placeholder_shape = placeholder.shape
for i, p in zip(input_shape, placeholder_shape):
if i != p and p != C.InferredDimension and p != C.FreeDimension:
return False
return True
示例5: placeholder
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def placeholder(
shape=None,
ndim=None,
dtype=None,
sparse=False,
name=None,
dynamic_axis_num=1):
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
dynamic_dimension = C.FreeDimension if _get_cntk_version() >= 2.2 else C.InferredDimension
cntk_shape = [dynamic_dimension if s is None else s for s in shape]
cntk_shape = tuple(cntk_shape)
if dynamic_axis_num > len(cntk_shape):
raise ValueError('CNTK backend: creating placeholder with '
'%d dimension is not supported, at least '
'%d dimensions are needed.'
% (len(cntk_shape, dynamic_axis_num)))
if name is None:
name = ''
cntk_shape = cntk_shape[dynamic_axis_num:]
x = C.input(
shape=cntk_shape,
dtype=_convert_string_dtype(dtype),
is_sparse=sparse,
name=name)
x._keras_shape = shape
x._uses_learning_phase = False
x._cntk_placeholder = True
return x
示例6: create_criterion_function
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def create_criterion_function(model):
labels = C.placeholder(name='labels')
ce = C.cross_entropy_with_softmax(model, labels)
errs = C.classification_error(model, labels)
return C.combine([ce, errs]) # (features, labels) -> (loss, metric)
示例7: create_model
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def create_model(model_details, num_classes, input_features, new_prediction_node_name="prediction", freeze=False):
# Load the pre-trained classification net and find nodes
base_model = cntk.load_model(model_details["model_file"])
feature_node = cntk.logging.find_by_name(base_model, model_details["feature_node_name"])
last_node = cntk.logging.find_by_name(base_model, model_details["last_hidden_node_name"])
if model_details["inception"]:
node_outputs = cntk.logging.get_node_outputs(base_model)
last_node = node_outputs[5]
feature_node = cntk.logging.find_all_with_name(base_model, "")[-5]
if model_details["vgg"]:
last_node = cntk.logging.find_by_name(base_model, "prob")
feature_node = cntk.logging.find_by_name(base_model, "data")
# Clone the desired layers with fixed weights
cloned_layers = cntk.combine([last_node.owner]).clone(
cntk.CloneMethod.freeze if freeze else cntk.CloneMethod.clone,
{feature_node: cntk.placeholder(name="features")},
)
# Add new dense layer for class prediction
feat_norm = input_features - cntk.Constant(114)
cloned_out = cloned_layers(feat_norm)
z = cntk.layers.Dense(num_classes, activation=None, name=new_prediction_node_name)(cloned_out)
return z
# Trains a transfer learning model
示例8: placeholder
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import placeholder [as 別名]
def placeholder(
shape=None,
ndim=None,
dtype=_FLOATX,
sparse=False,
name=None,
dynamic_axis_num=1):
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
cntk_shape = [C.InferredDimension if s is None else s for s in shape]
cntk_shape = tuple(cntk_shape)
if dynamic_axis_num > len(cntk_shape):
raise ValueError('CNTK backend: creating placeholder with '
'%d dimension is not supported, at least '
'%d dimensions are needed.'
% (len(cntk_shape, dynamic_axis_num)))
if name is None:
name = ''
cntk_shape = cntk_shape[dynamic_axis_num:]
x = C.input(
shape=cntk_shape,
dtype=_convert_string_dtype(dtype),
is_sparse=sparse,
name=name)
x._keras_shape = shape
x._uses_learning_phase = False
return x