當前位置: 首頁>>代碼示例>>Python>>正文


Python cntk.output_variable方法代碼示例

本文整理匯總了Python中cntk.output_variable方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.output_variable方法的具體用法?Python cntk.output_variable怎麽用?Python cntk.output_variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk的用法示例。


在下文中一共展示了cntk.output_variable方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: infer_outputs

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import output_variable [as 別名]
def infer_outputs(self):
        # sampled rois (0, x1, y1, x2, y2)
        # for CNTK the proposal shape is [4 x roisPerImage], and mirrored in Python
        rois_shape = (FreeDimension, 4)
        labels_shape = (FreeDimension, self._num_classes)
        bbox_targets_shape = (FreeDimension, self._num_classes * 4)
        bbox_inside_weights_shape = (FreeDimension, self._num_classes * 4)

        return [output_variable(rois_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="rpn_target_rois_raw", needs_gradient=False),
                output_variable(labels_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="label_targets_raw", needs_gradient=False),
                output_variable(bbox_targets_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="bbox_targets_raw", needs_gradient=False),
                output_variable(bbox_inside_weights_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="bbox_inside_w_raw", needs_gradient=False)] 
開發者ID:karolzak,項目名稱:cntk-python-web-service-on-azure,代碼行數:18,代碼來源:proposal_target_layer.py

示例2: infer_outputs

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import output_variable [as 別名]
def infer_outputs(self):
        # This is a necessary work around since anfter cloning the cloned inputs are just place holders without the proper shape
        if self._cfm_shape is None:
            self._cfm_shape = self.inputs[0].shape
        height, width = self._cfm_shape[-2:]

        if DEBUG:
            print('AnchorTargetLayer: height', height, 'width', width)

        A = self._num_anchors
        # labels
        labelShape = (1, A, height, width)
        # Comment: this layer uses encoded labels, while in CNTK we mostly use one hot labels
        # bbox_targets
        bbox_target_shape = (1, A * 4, height, width)
        # bbox_inside_weights
        bbox_inside_weights_shape = (1, A * 4, height, width)

        return [output_variable(labelShape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="objectness_target", needs_gradient=False),
                output_variable(bbox_target_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="rpn_bbox_target", needs_gradient=False),
                output_variable(bbox_inside_weights_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="rpn_bbox_inside_w", needs_gradient=False),] 
開發者ID:karolzak,項目名稱:cntk-python-web-service-on-azure,代碼行數:26,代碼來源:anchor_target_layer.py

示例3: infer_outputs

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import output_variable [as 別名]
def infer_outputs(self):
        # This is a necessary work around since after cloning the cloned inputs are just place holders without the proper shape
        if self._cfm_shape is None:
            self._cfm_shape = self.inputs[0].shape
        height, width = self._cfm_shape[-2:]

        if DEBUG:
            print('AnchorTargetLayer: height', height, 'width', width)

        A = self._num_anchors
        # labels
        labelShape = (1, A, height, width)
        # Comment: this layer uses encoded labels, while in CNTK we mostly use one hot labels
        # bbox_targets
        bbox_target_shape = (1, A * 4, height, width)
        # bbox_inside_weights
        bbox_inside_weights_shape = (1, A * 4, height, width)

        return [output_variable(labelShape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="objectness_target", needs_gradient=False),
                output_variable(bbox_target_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="rpn_bbox_target", needs_gradient=False),
                output_variable(bbox_inside_weights_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                                name="rpn_bbox_inside_w", needs_gradient=False),] 
開發者ID:Esri,項目名稱:raster-deep-learning,代碼行數:26,代碼來源:anchor_target_layer.py

示例4: infer_outputs

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import output_variable [as 別名]
def infer_outputs(self):
        # rois blob: holds R regions of interest, each is a 5-tuple
        # (n, x1, y1, x2, y2) specifying an image batch index n and a
        # rectangle (x1, y1, x2, y2)
        # for CNTK the proposal shape is [4 x roisPerImage], and mirrored in Python
        proposalShape = (FreeDimension, 4)

        return [output_variable(proposalShape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
                            name="rpn_rois_raw", needs_gradient=False)] 
開發者ID:karolzak,項目名稱:cntk-python-web-service-on-azure,代碼行數:11,代碼來源:proposal_layer.py

示例5: infer_outputs

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import output_variable [as 別名]
def infer_outputs(self):
        batch_axis = C.Axis.default_batch_axis()
        return [
            C.output_variable(
                self.target_shape,
                self.inputs[0].dtype,
                [batch_axis])] 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:cntk_backend.py


注:本文中的cntk.output_variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。