當前位置: 首頁>>代碼示例>>Python>>正文


Python cntk.momentum_schedule方法代碼示例

本文整理匯總了Python中cntk.momentum_schedule方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.momentum_schedule方法的具體用法?Python cntk.momentum_schedule怎麽用?Python cntk.momentum_schedule使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk的用法示例。


在下文中一共展示了cntk.momentum_schedule方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_graph

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import momentum_schedule [as 別名]
def build_graph(config):
    assert(config['type'] in ["cnn", "lstm", "gru", "bilstm", "bigru"])
    if config["type"] == "cnn":
        # static model
        features = C.input_variable(input_dim_model, name="input")
        labels = C.input_variable(label_dim, name="label")
    else:
        # recurrent model
        features = C.sequence.input_variable(input_dim_model, name="input")
        labels = C.sequence.input_variable(label_dim, name="label")
    netoutput = create_model(features, config["type"], config["encoder"], config["pretrained_model"], config["e3_clone"])

    if config["l2_loss_type"] == 1:
        print("Use standard l2 loss")
        ce = l2_loss(netoutput, labels)
    elif config["l2_loss_type"] == 2:
        print("Use variance normalized l2 loss")
        ce = std_normalized_l2_loss(netoutput, labels)
    else:
        raise ValueError("Unsupported loss type")

    # enforce sparsity output
    if config["l1_reg"] > sys.float_info.epsilon:
        ce = ce + config["l1_reg"] * l1_reg_loss(netoutput)
    
    # performance metrics
    pe = C.squared_error(netoutput, labels)

    if config["constlr"]:
        lr_schedule = config["lr"]
    else:
        if config["lr_list"] is not None:
            print("use learning rate schedule from file")
            lr_schedule = config["lr_list"]
        else:
            if config["type"] != "cnn": # default learning rate for recurrent model
                lr_schedule = [0.005] + [0.0025]*2 + [0.001]*4 + [0.0005]*8 + [0.00025]*16 + [0.0001]*1000 + [0.00005]*1000 + [0.000025]
            elif config["lr_schedule"] == 1: # learning rate for CNN
                lr_schedule = [0.005] + [0.0025]*2 + [0.00125]*3 + [0.0005]*4 + [0.00025]*5 + [0.0001]
            elif config["lr_schedule"] == 2:
                lr_schedule = [0.005] + [0.0025]*2 + [0.00125]*3 + [0.0005]*4 + [0.00025]*5 + [0.0001]*100 + [0.00005]*50 + [0.000025]*50 + [0.00001]
            else:
                raise ValueError("unknown learning rate")
    learning_rate = C.learning_parameter_schedule_per_sample(lr_schedule, epoch_size=config["epoch_size"])
    momentum_schedule = C.momentum_schedule(0.9, minibatch_size=300)
    
    learner = C.adam(netoutput.parameters, lr=learning_rate, momentum=momentum_schedule,
                        l2_regularization_weight=0.0001,
                        gradient_clipping_threshold_per_sample=3.0, gradient_clipping_with_truncation=True)
    trainer = C.Trainer(netoutput, (ce, pe), [learner])

    return features, labels, netoutput, trainer


#-----------------------------------
# training procedure
#-----------------------------------

# create reader 
開發者ID:haixpham,項目名稱:end2end_AU_speech,代碼行數:61,代碼來源:train_end2end.py

示例2: train

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import momentum_schedule [as 別名]
def train(self, x, y, reader, model_func, max_epochs=10, task="slot_tagging"):
        log.info("Training...")

        # Instantiate the model function; x is the input (feature) variable
        model = model_func(x)

        # Instantiate the loss and error function
        loss, label_error = self.create_criterion_function_preferred(model, y)

        # training config
        epoch_size = 18000  # 18000 samples is half the dataset size
        minibatch_size = 70

        # LR schedule over epochs
        # In CNTK, an epoch is how often we get out of the minibatch loop to
        # do other stuff (e.g. checkpointing, adjust learning rate, etc.)
        lr_per_sample = [3e-4] * 4 + [1.5e-4]
        lr_per_minibatch = [lr * minibatch_size for lr in lr_per_sample]
        lr_schedule = C.learning_parameter_schedule(lr_per_minibatch, epoch_size=epoch_size)

        # Momentum schedule
        momentums = C.momentum_schedule(0.9048374180359595, minibatch_size=minibatch_size)

        # We use a the Adam optimizer which is known to work well on this dataset
        # Feel free to try other optimizers from
        # https://www.cntk.ai/pythondocs/cntk.learner.html#module-cntk.learner
        learner = C.adam(
            parameters=model.parameters,
            lr=lr_schedule,
            momentum=momentums,
            gradient_clipping_threshold_per_sample=15,
            gradient_clipping_with_truncation=True)

        # Setup the progress updater
        progress_printer = C.logging.ProgressPrinter(tag="Training", num_epochs=max_epochs)

        # Instantiate the trainer
        trainer = C.Trainer(model, (loss, label_error), learner, progress_printer)

        # process mini batches and perform model training
        C.logging.log_number_of_parameters(model)

        # Assign the data fields to be read from the input
        if task == "slot_tagging":
            data_map = {x: reader.streams.query, y: reader.streams.slot_labels}
        else:
            data_map = {x: reader.streams.query, y: reader.streams.intent}

        t = 0
        for epoch in range(max_epochs):  # loop over epochs
            epoch_end = (epoch + 1) * epoch_size
            while t < epoch_end:  # loop over mini batches on the epoch
                data = reader.next_minibatch(minibatch_size, input_map=data_map)  # fetch mini batch
                trainer.train_minibatch(data)  # update model with it
                t += data[y].num_samples  # samples so far
            trainer.summarize_training_progress()

        return model 
開發者ID:singnet,項目名稱:nlp-services,代碼行數:60,代碼來源:language_understanding.py


注:本文中的cntk.momentum_schedule方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。