當前位置: 首頁>>代碼示例>>Python>>正文


Python cntk.minus方法代碼示例

本文整理匯總了Python中cntk.minus方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.minus方法的具體用法?Python cntk.minus怎麽用?Python cntk.minus使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk的用法示例。


在下文中一共展示了cntk.minus方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: SmoothL1Loss

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import minus [as 別名]
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights):
    """
        From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py

        ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets))
        SmoothL1(x) = 0.5 * (sigma * x)^2,    if |x| < 1 / sigma^2
                        |x| - 0.5 / sigma^2,    otherwise
    """
    sigma2 = sigma * sigma

    inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets)))

    smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2)
    smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2)
    smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2)
    smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign),
                              C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign)))

    return C.element_times(bbox_outside_weights, smooth_l1_result) 
開發者ID:karolzak,項目名稱:cntk-python-web-service-on-azure,代碼行數:21,代碼來源:cntk_smoothL1_loss.py

示例2: _moments

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import minus [as 別名]
def _moments(x, axes=None, shift=None, keep_dims=False):
    _axes = tuple(axes)
    if shift is None:
        shift = x
        # Compute true mean while keeping the dims for proper broadcasting.
        for axis in _axes:
            shift = C.reduce_mean(shift, axis=axis)

    shift = C.stop_gradient(shift)
    shifted_mean = C.minus(x, shift)
    for axis in _axes:
        shifted_mean = C.reduce_mean(shifted_mean, axis=axis)

    variance_mean = C.square(C.minus(x, shift))
    for axis in _axes:
        variance_mean = C.reduce_mean(variance_mean, axis=axis)

    variance = C.minus(variance_mean, C.square(shifted_mean))
    mean = C.plus(shifted_mean, shift)

    if not keep_dims:
        mean = squeeze(mean, _axes)
        variance = squeeze(variance, _axes)

    return mean, variance 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:27,代碼來源:cntk_backend.py

示例3: test_minus_1

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import minus [as 別名]
def test_minus_1():
    cntk_op = C.minus([1, 2, 3], [4, 5, 6])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equal(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py

示例4: test_minus_2

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import minus [as 別名]
def test_minus_2():
    cntk_op = C.minus([[1, 2, 3], [4, 5, 6]], [7, 8, 9])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equal(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py

示例5: test_minus_3

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import minus [as 別名]
def test_minus_3():
    cntk_op = C.minus([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
    cntk_ret = cntk_op.eval()

    ng_op, _ = CNTKImporter().import_model(cntk_op)
    ng_ret = ng.transformers.make_transformer().computation(ng_op)()

    assert np.array_equal(cntk_ret, ng_ret) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:10,代碼來源:test_ops_binary.py


注:本文中的cntk.minus方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。