當前位置: 首頁>>代碼示例>>Python>>正文


Python cntk.log方法代碼示例

本文整理匯總了Python中cntk.log方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.log方法的具體用法?Python cntk.log怎麽用?Python cntk.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk的用法示例。


在下文中一共展示了cntk.log方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_log

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import log [as 別名]
def test_log():
    assert_cntk_ngraph_array_equal(C.log([1., 2.]))
    assert_cntk_ngraph_array_equal(C.log([[1, 2], [3, 4]]))
    assert_cntk_ngraph_array_equal(C.log([[[1, 2], [3, 4]], [[1, 2], [3, 4]]])) 
開發者ID:NervanaSystems,項目名稱:ngraph-python,代碼行數:6,代碼來源:test_ops_unary.py

示例2: logsumexp

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import log [as 別名]
def logsumexp(x, axis=None, keepdims=False):
    return log(sum(exp(x), axis=axis, keepdims=keepdims)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:cntk_backend.py

示例3: log

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import log [as 別名]
def log(x):
    return C.log(x) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:cntk_backend.py

示例4: binary_crossentropy

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import log [as 別名]
def binary_crossentropy(target, output, from_logits=False):
    if from_logits:
        output = C.sigmoid(output)
    output = C.clip(output, epsilon(), 1.0 - epsilon())
    output = -target * C.log(output) - (1.0 - target) * C.log(1.0 - output)
    return output 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:8,代碼來源:cntk_backend.py

示例5: categorical_crossentropy

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import log [as 別名]
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
    # Here, unlike other backends, the tensors lack a batch dimension:
    axis_without_batch = -1 if axis == -1 else axis - 1
    output_dimensions = list(range(len(output.shape)))
    if axis_without_batch != -1 and axis_without_batch not in output_dimensions:
        raise ValueError(
            '{}{}{}'.format(
                'Unexpected channels axis {}. '.format(axis_without_batch),
                'Expected to be -1 or one of the axes of `output`, ',
                'which has {} dimensions.'.format(len(output.shape))))
    # If the channels are not in the last axis, move them to be there:
    if axis_without_batch != -1 and axis_without_batch != output_dimensions[-1]:
        permutation = output_dimensions[:axis_without_batch]
        permutation += output_dimensions[axis_without_batch + 1:]
        permutation += [axis_without_batch]
        output = C.transpose(output, permutation)
        target = C.transpose(target, permutation)
    if from_logits:
        result = C.cross_entropy_with_softmax(output, target)
        # cntk's result shape is (batch, 1), while keras expect (batch, )
        return C.reshape(result, ())
    else:
        # scale preds so that the class probas of each sample sum to 1
        output /= C.reduce_sum(output, axis=-1)
        # avoid numerical instability with epsilon clipping
        output = C.clip(output, epsilon(), 1.0 - epsilon())
        return -sum(target * C.log(output), axis=-1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:29,代碼來源:cntk_backend.py

示例6: categorical_crossentropy

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import log [as 別名]
def categorical_crossentropy(target, output, from_logits=False):
    if from_logits:
        result = C.cross_entropy_with_softmax(output, target)
        # cntk's result shape is (batch, 1), while keras expect (batch, )
        return C.reshape(result, ())
    else:
        # scale preds so that the class probas of each sample sum to 1
        output /= C.reduce_sum(output, axis=-1)
        # avoid numerical instability with epsilon clipping
        output = C.clip(output, epsilon(), 1.0 - epsilon())
        return -sum(target * C.log(output), axis=-1) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:13,代碼來源:cntk_backend.py


注:本文中的cntk.log方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。