當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Dense方法代碼示例

本文整理匯總了Python中cntk.layers.Dense方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dense方法的具體用法?Python layers.Dense怎麽用?Python layers.Dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk.layers的用法示例。


在下文中一共展示了layers.Dense方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_convolutional_neural_network

# 需要導入模塊: from cntk import layers [as 別名]
# 或者: from cntk.layers import Dense [as 別名]
def create_convolutional_neural_network(input_vars, out_dims, dropout_prob=0.0):

    convolutional_layer_1 = Convolution((5, 5), 32, strides=1, activation=cntk.ops.relu, pad=True, init=gaussian(), init_bias=0.1)(input_vars)
    pooling_layer_1 = MaxPooling((2, 2), strides=(2, 2), pad=True)(convolutional_layer_1)

    convolutional_layer_2 = Convolution((5, 5), 64, strides=1, activation=cntk.ops.relu, pad=True, init=gaussian(), init_bias=0.1)(pooling_layer_1)
    pooling_layer_2 = MaxPooling((2, 2), strides=(2, 2), pad=True)(convolutional_layer_2)

    convolutional_layer_3 = Convolution((5, 5), 128, strides=1, activation=cntk.ops.relu, pad=True, init=gaussian(), init_bias=0.1)(pooling_layer_2)
    pooling_layer_3 = MaxPooling((2, 2), strides=(2, 2), pad=True)(convolutional_layer_3)

    fully_connected_layer = Dense(1024, activation=cntk.ops.relu, init=gaussian(), init_bias=0.1)(pooling_layer_3)
    dropout_layer = Dropout(dropout_prob)(fully_connected_layer)
    output_layer = Dense(out_dims, activation=None, init=gaussian(), init_bias=0.1)(dropout_layer)

    return output_layer

# Define the input to the neural network 
開發者ID:tuzzer,項目名稱:ai-gym,代碼行數:20,代碼來源:mnist_softmax_cntk.py

示例2: create_convolutional_neural_network

# 需要導入模塊: from cntk import layers [as 別名]
# 或者: from cntk.layers import Dense [as 別名]
def create_convolutional_neural_network(input_vars, out_dims):

        convolutional_layer_1 = Convolution((5, 5), 32, strides=1, activation=cntk.ops.relu, pad=True,
                                            init=glorot_normal(), init_bias=0.1)
        pooling_layer_1 = MaxPooling((2, 2), strides=(2, 2), pad=True)

        convolutional_layer_2 = Convolution((5, 5), 64, strides=1, activation=cntk.ops.relu, pad=True,
                                            init=glorot_normal(), init_bias=0.1)
        pooling_layer_2 = MaxPooling((2, 2), strides=(2, 2), pad=True)

        convolutional_layer_3 = Convolution((5, 5), 128, strides=1, activation=cntk.ops.relu, pad=True,
                                            init=glorot_normal(), init_bias=0.1)
        pooling_layer_3 = MaxPooling((2, 2), strides=(2, 2), pad=True)

        fully_connected_layer = Dense(1024, activation=cntk.ops.relu, init=glorot_normal(), init_bias=0.1)

        output_layer = Dense(out_dims, activation=None, init=glorot_normal(), init_bias=0.1)

        model = Sequential([convolutional_layer_1, pooling_layer_1,
                            convolutional_layer_2, pooling_layer_2,
                            #convolutional_layer_3, pooling_layer_3,
                            fully_connected_layer,
                            output_layer])(input_vars)
        return model 
開發者ID:tuzzer,項目名稱:ai-gym,代碼行數:26,代碼來源:atari_breakout_dqn_cntk.py

示例3: create_cifar10_model

# 需要導入模塊: from cntk import layers [as 別名]
# 或者: from cntk.layers import Dense [as 別名]
def create_cifar10_model(input, num_stack_layers, num_classes):
    c_map = [16, 32, 64]

    conv = conv_bn_relu(input, (3,3), c_map[0])
    r1 = resnet_basic_stack(conv, num_stack_layers, c_map[0])

    r2_1 = resnet_basic_inc(r1, c_map[1])
    r2_2 = resnet_basic_stack(r2_1, num_stack_layers-1, c_map[1])

    r3_1 = resnet_basic_inc(r2_2, c_map[2])
    r3_2 = resnet_basic_stack(r3_1, num_stack_layers-1, c_map[2])

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(8,8))(r3_2) 
    z = Dense(num_classes)(pool)
    return z 
開發者ID:weehyong,項目名稱:k8scntkSamples,代碼行數:18,代碼來源:resnet_models.py

示例4: create_multi_layer_neural_network

# 需要導入模塊: from cntk import layers [as 別名]
# 或者: from cntk.layers import Dense [as 別名]
def create_multi_layer_neural_network(input_vars, out_dims, num_hidden_layers):

        input_dims = input_vars.shape[0]
        num_hidden_neurons = input_dims**3

        hidden_layer = lambda: Dense(num_hidden_neurons, activation=cntk.ops.relu)
        output_layer = Dense(out_dims, activation=None)

        model = Sequential([LayerStack(num_hidden_layers, hidden_layer),
                            output_layer])(input_vars)
        return model 
開發者ID:tuzzer,項目名稱:ai-gym,代碼行數:13,代碼來源:cart_pole_dqn_cntk.py

示例5: create_pooling_neural_network

# 需要導入模塊: from cntk import layers [as 別名]
# 或者: from cntk.layers import Dense [as 別名]
def create_pooling_neural_network(input_vars, out_dims):

        hidden_layer_1 = Dense(2, activation=cntk.ops.relu)
        hidden_layer_2 = Dense(16, activation=cntk.ops.relu)
        output_layer = Dense(out_dims, activation=None)

        model = Sequential([hidden_layer_1,
                            hidden_layer_2,
                            output_layer])(input_vars)
        return model 
開發者ID:tuzzer,項目名稱:ai-gym,代碼行數:12,代碼來源:cart_pole_dqn_cntk.py

示例6: create_multi_layer_neural_network

# 需要導入模塊: from cntk import layers [as 別名]
# 或者: from cntk.layers import Dense [as 別名]
def create_multi_layer_neural_network(input_vars, out_dims, num_hidden_layers):

        num_hidden_neurons = 128

        hidden_layer = lambda: Dense(num_hidden_neurons, activation=cntk.ops.relu)
        output_layer = Dense(out_dims, activation=None)

        model = Sequential([LayerStack(num_hidden_layers, hidden_layer),
                            output_layer])(input_vars)
        return model 
開發者ID:tuzzer,項目名稱:ai-gym,代碼行數:12,代碼來源:atari_breakout_dqn_cntk.py


注:本文中的cntk.layers.Dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。