當前位置: 首頁>>代碼示例>>Python>>正文


Python cntk.greater_equal方法代碼示例

本文整理匯總了Python中cntk.greater_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.greater_equal方法的具體用法?Python cntk.greater_equal怎麽用?Python cntk.greater_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cntk的用法示例。


在下文中一共展示了cntk.greater_equal方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: greater_equal

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import greater_equal [as 別名]
def greater_equal(x, y):
    return C.greater_equal(x, y) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:cntk_backend.py

示例2: create_detection_losses

# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import greater_equal [as 別名]
def create_detection_losses(cls_score, label_targets, rois, bbox_pred, bbox_targets, bbox_inside_weights):
    # classification loss
    cls_loss = cross_entropy_with_softmax(cls_score, label_targets, axis=1)

    p_cls_loss = placeholder()
    p_rois = placeholder()
    # The terms that are accounted for in the cls loss are those that correspond to an actual roi proposal --> do not count no-op (all-zero) rois
    roi_indicator = reduce_sum(p_rois, axis=1)
    cls_num_terms = reduce_sum(cntk.greater_equal(roi_indicator, 0.0))
    cls_normalization_factor = 1.0 / cls_num_terms
    normalized_cls_loss = reduce_sum(p_cls_loss) * cls_normalization_factor

    reduced_cls_loss = cntk.as_block(normalized_cls_loss,
                                     [(p_cls_loss, cls_loss), (p_rois, rois)],
                                     'Normalize', 'norm_cls_loss')

    # regression loss
    p_bbox_pred = placeholder()
    p_bbox_targets = placeholder()
    p_bbox_inside_weights = placeholder()
    bbox_loss = SmoothL1Loss(cfg["CNTK"].SIGMA_DET_L1, p_bbox_pred, p_bbox_targets, p_bbox_inside_weights, 1.0)
    # The bbox loss is normalized by the batch size
    bbox_normalization_factor = 1.0 / cfg["TRAIN"].BATCH_SIZE
    normalized_bbox_loss = reduce_sum(bbox_loss) * bbox_normalization_factor

    reduced_bbox_loss = cntk.as_block(normalized_bbox_loss,
                                     [(p_bbox_pred, bbox_pred), (p_bbox_targets, bbox_targets), (p_bbox_inside_weights, bbox_inside_weights)],
                                     'SmoothL1Loss', 'norm_bbox_loss')

    detection_losses = plus(reduced_cls_loss, reduced_bbox_loss, name="detection_losses")

    return detection_losses 
開發者ID:karolzak,項目名稱:cntk-hotel-pictures-classificator,代碼行數:34,代碼來源:FasterRCNN.py


注:本文中的cntk.greater_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。