本文整理匯總了Python中cntk.constant方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.constant方法的具體用法?Python cntk.constant怎麽用?Python cntk.constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cntk
的用法示例。
在下文中一共展示了cntk.constant方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _padding
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def _padding(x, pattern, axis): # pragma: no cover
base_shape = x.shape
if b_any([dim < 0 for dim in base_shape]):
raise ValueError('CNTK Backend: padding input tensor with '
'shape `%s` contains non-specified dimension, '
'which is not supported. Please give fixed '
'dimension to enable padding.' % base_shape)
if pattern[0] > 0:
prefix_shape = list(base_shape)
prefix_shape[axis] = pattern[0]
prefix_shape = tuple(prefix_shape)
x = C.splice(C.constant(value=0, shape=prefix_shape), x, axis=axis)
base_shape = x.shape
if pattern[1] > 0:
postfix_shape = list(base_shape)
postfix_shape[axis] = pattern[1]
postfix_shape = tuple(postfix_shape)
x = C.splice(x, C.constant(value=0, shape=postfix_shape), axis=axis)
return x
示例2: _padding
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def _padding(x, pattern, axis):
base_shape = x.shape
if b_any([dim < 0 for dim in base_shape]):
raise ValueError('CNTK Backend: padding input tensor with '
'shape `%s` contains non-specified dimension, '
'which is not supported. Please give fixed '
'dimension to enable padding.' % base_shape)
if pattern[0] > 0:
prefix_shape = list(base_shape)
prefix_shape[axis] = pattern[0]
prefix_shape = tuple(prefix_shape)
x = C.splice(C.constant(value=0, shape=prefix_shape), x, axis=axis)
base_shape = x.shape
if pattern[1] > 0:
postfix_shape = list(base_shape)
postfix_shape[axis] = pattern[1]
postfix_shape = tuple(postfix_shape)
x = C.splice(x, C.constant(value=0, shape=postfix_shape), axis=axis)
return x
示例3: _padding
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def _padding(x, pattern, axis):
base_shape = x.shape
if b_any([dim < 0 for dim in base_shape]):
raise ValueError('CNTK Backend: padding input tensor with '
'shape `%s` contains non-specified dimension, '
'which is not supported. Please give fixed '
'dimension to enable padding.' % base_shape)
if pattern[0] > 0:
prefix_shape = list(base_shape)
prefix_shape[axis] = pattern[0]
prefix_shape = tuple(prefix_shape)
x = C.splice(C.constant(value=0, shape=prefix_shape), x, axis=axis)
base_shape = x.shape
if pattern[1] > 0:
postfix_shape = list(base_shape)
postfix_shape[axis] = pattern[1]
postfix_shape = tuple(postfix_shape)
x = C.splice(x, C.constant(value=0, shape=postfix_shape), axis=axis)
return x
示例4: create_model
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def create_model(base_model_file, input_features, num_classes, dropout_rate = 0.5, freeze_weights = False):
# Load the pretrained classification net and find nodes
base_model = load_model(base_model_file)
feature_node = find_by_name(base_model, 'features')
beforePooling_node = find_by_name(base_model, "z.x.x.r")
#graph.plot(base_model, filename="base_model.pdf") # Write graph visualization
# Clone model until right before the pooling layer, ie. until including z.x.x.r
modelCloned = combine([beforePooling_node.owner]).clone(
CloneMethod.freeze if freeze_weights else CloneMethod.clone,
{feature_node: placeholder(name='features')})
# Center the input around zero and set model input.
# Do this early, to avoid CNTK bug with wrongly estimated layer shapes
feat_norm = input_features - constant(114)
model = modelCloned(feat_norm)
# Pool over all spatial dimensions and add dropout layer
avgPool = GlobalAveragePooling(name = "poolingLayer")(model)
if dropout_rate > 0:
avgPoolDrop = Dropout(dropout_rate)(avgPool)
else:
avgPoolDrop = avgPool
# Add new dense layer for class prediction
finalModel = Dense(num_classes, activation=None, name="prediction") (avgPoolDrop)
return finalModel
# Trains a transfer learning model
開發者ID:Azure-Samples,項目名稱:MachineLearningSamples-ImageClassificationUsingCntk,代碼行數:32,代碼來源:helpers_cntk.py
示例5: constant
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def constant(value, dtype=None, shape=None, name=None):
if dtype is None:
dtype = floatx()
if shape is None:
shape = ()
np_value = value * np.ones(shape)
const = C.constant(np_value,
dtype=dtype,
name=_prepare_name(name, 'constant'))
const._keras_shape = const.shape
const._uses_learning_phase = False
return const
示例6: gradients
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def gradients(loss, variables):
# cntk does not support gradients as symbolic op,
# to hook up with keras model
# we will return a constant as place holder, the cntk learner will apply
# the gradient during training.
global grad_parameter_dict
if isinstance(variables, list) is False:
variables = [variables]
grads = []
for v in variables:
g = C.constant(0, shape=v.shape, name='keras_grad_placeholder')
grads.append(g)
grad_parameter_dict[g] = v
return grads
示例7: std_normalized_l2_loss
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def std_normalized_l2_loss(output, target):
std_inv = np.array([6.6864805402, 5.2904440280, 3.7165409939, 4.1421640454, 8.1537399389, 7.0312877415, 2.6712380967,
2.6372177876, 8.4253649884, 6.7482162880, 9.0849960354, 10.2624412692, 3.1325531319, 3.1091179819,
2.7337937590, 2.7336441031, 4.3542467871, 5.4896293687, 6.2003761588, 3.1290341469, 5.7677042738,
11.5460919611, 9.9926451700, 5.4259818848, 20.5060642486, 4.7692101480, 3.1681517575, 3.8582905289,
3.4222250436, 4.6828286809, 3.0070785113, 2.8936539301, 4.0649030157, 25.3068458731, 6.0030623160,
3.1151977458, 7.7773542649, 6.2057372469, 9.9494258692, 4.6865422850, 5.3300697628, 2.7722027974,
4.0658663003, 18.1101618617, 3.5390113731, 2.7794520068], dtype=np.float32)
weights = C.constant(value=std_inv) #.reshape((1, label_dim)))
dif = output - target
ret = C.reduce_mean(C.square(C.element_times(dif, weights)))
return ret
示例8: lrelu
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def lrelu(input, leak=0.2, name=""):
return C.param_relu(C.constant((np.ones(input.shape)*leak).astype(np.float32)), input, name=name)
示例9: broadcast_xy
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import constant [as 別名]
def broadcast_xy(input_vec, h, w):
""" broadcast input vector of length d to tensor (d x h x w) """
assert(h > 0 and w > 0)
d = input_vec.shape[0]
# reshape vector to d x 1 x 1
x = C.reshape(input_vec, (d, 1, 1))
# create a zeros-like tensor of size (d x h x w)
t = np.zeros((d, h, w), dtype=np.float32)
y = C.constant(t)
z = C.reconcile_dynamic_axes(y, x)
z = z + x
return z