本文整理匯總了Python中cntk.FreeDimension方法的典型用法代碼示例。如果您正苦於以下問題:Python cntk.FreeDimension方法的具體用法?Python cntk.FreeDimension怎麽用?Python cntk.FreeDimension使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cntk
的用法示例。
在下文中一共展示了cntk.FreeDimension方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: infer_outputs
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import FreeDimension [as 別名]
def infer_outputs(self):
# sampled rois (0, x1, y1, x2, y2)
# for CNTK the proposal shape is [4 x roisPerImage], and mirrored in Python
rois_shape = (FreeDimension, 4)
labels_shape = (FreeDimension, self._num_classes)
bbox_targets_shape = (FreeDimension, self._num_classes * 4)
bbox_inside_weights_shape = (FreeDimension, self._num_classes * 4)
return [output_variable(rois_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
name="rpn_target_rois_raw", needs_gradient=False),
output_variable(labels_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
name="label_targets_raw", needs_gradient=False),
output_variable(bbox_targets_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
name="bbox_targets_raw", needs_gradient=False),
output_variable(bbox_inside_weights_shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
name="bbox_inside_w_raw", needs_gradient=False)]
示例2: squeeze
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import FreeDimension [as 別名]
def squeeze(x, axis):
if isinstance(axis, tuple):
axis = list(axis)
if not isinstance(axis, list):
axis = [axis]
shape = list(int_shape(x))
_axis = []
for _ in axis:
if isinstance(_, int):
_axis.append(_ if _ >= 0 else _ + len(shape))
if len(_axis) == 0:
return x
nones = _get_dynamic_axis_num(x)
for _ in sorted(_axis, reverse=True):
del shape[_]
new_shape = shape[nones:]
new_shape = tuple([C.InferredDimension if _ == C.FreeDimension else _ for _ in new_shape])
return C.reshape(x, new_shape)
示例3: _reshape_dummy_dim
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import FreeDimension [as 別名]
def _reshape_dummy_dim(x, axis):
shape = list(x.shape)
_axis = [_ + len(shape) if _ < 0 else _ for _ in axis]
if shape.count(C.InferredDimension) > 1 or shape.count(C.FreeDimension) > 1:
result = x
for index in sorted(_axis, reverse=True):
result = C.reshape(result,
shape=(),
begin_axis=index,
end_axis=index + 1)
return result
else:
for index in sorted(_axis, reverse=True):
del shape[index]
shape = [C.InferredDimension if _ == C.FreeDimension else _ for _ in shape]
return C.reshape(x, shape)
示例4: repeat
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import FreeDimension [as 別名]
def repeat(x, n):
# this is a workaround for recurrent layer
# if n is inferred dimension,
# we can't figure out how to repeat it in cntk now
# return the same x to take cntk broadcast feature
# to make the recurrent layer work.
# need to be fixed in GA.
if n is C.InferredDimension or n is C.FreeDimension:
return x
index = 1 - _get_dynamic_axis_num(x)
if index < 0 or index > 1:
raise NotImplementedError
new_shape = list(x.shape)
new_shape.insert(index, 1)
new_shape = tuple(new_shape)
x = C.reshape(x, new_shape)
temp = [x] * n
return C.splice(*temp, axis=index)
示例5: infer_outputs
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import FreeDimension [as 別名]
def infer_outputs(self):
# rois blob: holds R regions of interest, each is a 5-tuple
# (n, x1, y1, x2, y2) specifying an image batch index n and a
# rectangle (x1, y1, x2, y2)
# for CNTK the proposal shape is [4 x roisPerImage], and mirrored in Python
proposalShape = (FreeDimension, 4)
return [output_variable(proposalShape, self.inputs[0].dtype, self.inputs[0].dynamic_axes,
name="rpn_rois_raw", needs_gradient=False)]
示例6: placeholder
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import FreeDimension [as 別名]
def placeholder(
shape=None,
ndim=None,
dtype=None,
sparse=False,
name=None,
dynamic_axis_num=1):
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
dynamic_dimension = C.FreeDimension if _get_cntk_version() >= 2.2 else C.InferredDimension
cntk_shape = [dynamic_dimension if s is None else s for s in shape]
cntk_shape = tuple(cntk_shape)
if dynamic_axis_num > len(cntk_shape):
raise ValueError('CNTK backend: creating placeholder with '
'%d dimension is not supported, at least '
'%d dimensions are needed.'
% (len(cntk_shape), dynamic_axis_num))
if name is None:
name = ''
cntk_shape = cntk_shape[dynamic_axis_num:]
x = C.input(
shape=cntk_shape,
dtype=_convert_string_dtype(dtype),
is_sparse=sparse,
name=name)
x._keras_shape = shape
x._uses_learning_phase = False
x._cntk_placeholder = True
return x
示例7: count_params
# 需要導入模塊: import cntk [as 別名]
# 或者: from cntk import FreeDimension [as 別名]
def count_params(x):
for _ in x.shape:
if _ == C.InferredDimension or _ == C.FreeDimension:
raise ValueError('CNTK backend: `count_params` with dynamic '
'shape is not supported. Please provide '
'fixed dimension instead of `None`.')
return np.prod(int_shape(x))