本文整理匯總了Python中cmath.log方法的典型用法代碼示例。如果您正苦於以下問題:Python cmath.log方法的具體用法?Python cmath.log怎麽用?Python cmath.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cmath
的用法示例。
在下文中一共展示了cmath.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: F_87
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def F_87(Lmu, sh):
"""Function $F_8^{(7)}$ giving the contribution of $O_7$ to the matrix element
of $O_8$, as given in eq. (40) of hep-ph/0312063.
- `sh` is $\hat s=q^2/m_b^2$,
"""
if sh==0.:
return (-4*(33 + 24*Lmu + 6j*pi - 2*pi**2))/27.
return (-32/9. * Lmu + 8/27. * pi**2 - 44/9. - 8/9. * 1j * pi
+ (4/3. * pi**2 - 40/3.) * sh + (32/9. * pi**2 - 316/9.) * sh**2
+ (200/27. * pi**2 - 658/9.) * sh**3 - 8/9. * log(sh) * (sh + sh**2 + sh**3))
# Functions for the two-loop virtual corrections to the matrix elements of
# O1,2 in b->dl+l- (also needed for doubly Cabibbo-suppressed contributions
# to b>sl+l-). Taken from hep-ph/0403185v2 (Seidel)
示例2: delta_C7
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def delta_C7(par, wc, q2, scale, qiqj):
alpha_s = running.get_alpha(par, scale)['alpha_s']
mb = running.get_mb_pole(par)
mc = par['m_c BVgamma']
xi_t = ckm.xi('t', qiqj)(par)
xi_u = ckm.xi('u', qiqj)(par)
muh = scale/mb
sh = q2/mb**2
z = mc**2/mb**2
Lmu = log(scale/mb)
# computing this once to save time
delta_tmp = wc['C1_'+qiqj] * F_17(muh, z, sh) + wc['C2_'+qiqj] * F_27(muh, z, sh)
delta_t = wc['C8eff_'+qiqj] * F_87(Lmu, sh) + delta_tmp
delta_u = delta_tmp + wc['C1_'+qiqj] * Fu_17(q2, mb, scale) + wc['C2_'+qiqj] * Fu_27(q2, mb, scale)
# note the minus sign between delta_t and delta_u. This is because of a sign
# switch in the definition of the "Fu" functions between hep-ph/0403185
# (used here) and hep-ph/0412400, see footnote 5 of 0811.1214.
return -alpha_s/(4*pi) * (delta_t - xi_u/xi_t * delta_u)
示例3: delta_C9
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def delta_C9(par, wc, q2, scale, qiqj):
alpha_s = running.get_alpha(par, scale)['alpha_s']
mb = running.get_mb_pole(par)
mc = running.get_mc_pole(par)
xi_t = ckm.xi('t', qiqj)(par)
xi_u = ckm.xi('u', qiqj)(par)
muh = scale/mb
sh = q2/mb**2
z = mc**2/mb**2
Lmu = log(scale/mb)
Ls = log(sh)
# computing this once to save time
delta_tmp = wc['C1_'+qiqj] * F_19(muh, z, sh) + wc['C2_'+qiqj] * F_29(muh, z, sh)
delta_t = wc['C8eff_'+qiqj] * F_89(Ls, sh) + delta_tmp
delta_u = delta_tmp + wc['C1_'+qiqj] * Fu_19(q2, mb, scale) + wc['C2_'+qiqj] * Fu_29(q2, mb, scale)
# note the minus sign between delta_t and delta_u. This is because of a sign
# switch in the definition of the "Fu" functions between hep-ph/0403185
# (used here) and hep-ph/0412400, see footnote 5 of 0811.1214.
return -alpha_s/(4*pi) * (delta_t - xi_u/xi_t * delta_u)
示例4: gLR
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def gLR(xc, xl):
if xl == 0:
return (4*sqrt(xc)*(1 + 9*xc - 9*xc**2 - xc**3 + 6*xc*(1 + xc)*log(xc))).real
else:
return (4*sqrt(xc)*(sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
+ 10*xc*sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
+ xc**2*sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
- 5*xl*sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
- 5*xc*xl*sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
- 2*xl**2*sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
- 12*xc*log(2) - 12*xc**2*log(2) + 24*xc*xl*log(2)
- 12*xl**2*log(2) - 12*(-1 + xc)*xl**2* log(1 - sqrt(xc))
- 6*xc*log(xc) - 6*xc**2*log(xc) + 12*xc*xl*log(xc) - 3*xl**2*log(xc)
- 3*xc*xl**2*log(xc) - 6*xl**2*log(sqrt(xc) - 2*xc + xc**1.5)
+ 6*xc*xl**2* log(sqrt(xc) - 2*xc + xc**1.5) - 6*xl**2*log(xl)
+ 6*xc*xl**2*log(xl) + 12*xc*log(1 + xc - xl
- sqrt(1 + (xc - xl)**2 - 2*(xc + xl)))
+ 12*xc**2*log(1 + xc - xl - sqrt(1 + (xc - xl)**2 - 2*(xc + xl)))
- 24*xc*xl*log(1 + xc - xl - sqrt(1 + (xc - xl)**2 - 2*(xc + xl)))
+ 6*xl**2*log(1 + xc - xl - sqrt(1 + (xc - xl)**2 - 2*(xc + xl)))
+ 6*xc*xl**2* log(1 + xc - xl - sqrt(1 + (xc - xl)**2 - 2*(xc + xl)))
+ 6*xl**2*log(1 + xc**2 - xl + sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
- xc*(2 + xl + sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))))
- 6*xc*xl**2* log(1 + xc**2 - xl + sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl))
- xc*(2 + xl + sqrt(xc**2 + (-1 + xl)**2 - 2*xc*(1 + xl)))))).real
示例5: _digamma_complex
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def _digamma_complex(x):
if not x.imag:
return complex(_digamma_real(x.real))
if x.real < 0.5:
x = 1.0-x
s = pi*cotpi(x)
else:
s = 0.0
while abs(x) < 10.0:
s -= 1.0/x
x += 1.0
x2 = x**-2
t = x2
for c in _psi_coeff:
s -= c*t
if abs(t) < 1e-20:
break
t *= x2
return s + cmath.log(x) - 0.5/x
示例6: ei_taylor
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def ei_taylor(z, _e1=False):
s = t = z
k = 2
while 1:
t = t*z/k
term = t/k
if abs(term) < 1e-17:
break
s += term
k += 1
s += euler
if _e1:
s += log(-z)
else:
if type(z) is float or z.imag == 0.0:
s += math_log(abs(z))
else:
s += cmath.log(z)
return s
示例7: powm1
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def powm1(ctx, x, y):
mag = ctx.mag
one = ctx.one
w = x**y - one
M = mag(w)
# Only moderate cancellation
if M > -8:
return w
# Check for the only possible exact cases
if not w:
if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)):
return w
x1 = x - one
magy = mag(y)
lnx = ctx.ln(x)
# Small y: x^y - 1 ~ log(x)*y + O(log(x)^2 * y^2)
if magy + mag(lnx) < -ctx.prec:
return lnx*y + (lnx*y)**2/2
# TODO: accurately eval the smaller of the real/imag part
return ctx.sum_accurately(lambda: iter([x**y, -1]), 1)
示例8: Plen
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def Plen(a):
if is_num(a):
if isinstance(a, complex) or a < 0:
return cmath.log(a, 2)
return math.log(a, 2)
if is_col(a):
return len(a)
return unknown_types(Plen, "l", a)
示例9: log
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def log(a, b=math.e):
if not is_num(a) or not is_num(b):
return unknown_types(log, ".l", a, b)
if a < 0:
return cmath.log(a, b)
return math.log(a, b)
示例10: computeBaseClassifierCoefficient
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def computeBaseClassifierCoefficient(self, classifierIdx):
'''
輸入當前正在訓練的基分類器下標(從0開始),計算當前的基分類器係數 alpha 。
:param classifierIdx: 當前分類器下標(從0開始)
:return:
'''
self.alphaList[classifierIdx] = (1.0 / 2 * \
cmath.log((1.0-self.eList[classifierIdx])/self.eList[classifierIdx], cmath.e)\
).real
示例11: LOG
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def LOG(df, price='Close'):
"""
Logarithm
Returns: list of floats = jhta.LOG(df, price='Close')
"""
return [cmath.log(df[price][i]).real for i in range(len(df[price]))]
示例12: B0diffBFS
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def B0diffBFS(q2, u, mq, mB):
ubar = 1 - u
if mq == 0.:
return -log(-(2/q2)) + log(-(2/(q2*u + mB**2 * ubar)))
return B0(ubar * mB**2 + u * q2, mq) - B0(q2, mq)
# (29) of hep-ph/0106067v2
示例13: L1
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def L1(x):
if x == 0.:
return -(pi**2/6.)
elif x == 1.:
return 0
return log((x - 1)/x) * log(1 - x) - pi**2/6. + li2(x/(x - 1))
示例14: h
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def h(s, mq, mu):
"""Fermion loop function as defined e.g. in eq. (11) of hep-ph/0106067v2."""
if mq == 0.:
return 8/27. + (4j*pi)/9. + (8 * log(mu))/9. - (4 * log(s))/9.
if s == 0.:
return -4/9. * (1 + log(mq**2/mu**2))
z = 4 * mq**2/s
if z > 1:
A = atan(1/sqrt(z-1))
else:
A = log((1+sqrt(1-z))/sqrt(z)) - 1j*pi/2.
return (-4/9. * log(mq**2/mu**2) + 8/27. + 4/9. * z
-4/9. * (2 + z) * sqrt(abs(z - 1)) * A)
示例15: SeidelA
# 需要導入模塊: import cmath [as 別名]
# 或者: from cmath import log [as 別名]
def SeidelA(q2, mb, mu):
"""Function $A(s\equiv q^2)$ defined in eq. (29) of hep-ph/0403185v2.
"""
if q2==0:
return 1/729. * (833 + 120j*pi - 312 * log(mb**2/mu**2))
sh = min(q2/mb**2, 0.999)
z = 4 / sh
return (-(104)/(243) * log((mb**2)/(mu**2)) + (4 * sh)/(27 * (1 - sh)) *
(li2(sh) + log(sh) * log( 1 - sh)) + (1)/(729 * (1 - sh)**2) * (6 * sh *
(29 - 47 * sh) * log(sh) + 785 - 1600 * sh + 833 * sh**2 + 6 * pi * 1j * (20 -
49 * sh + 47 * sh**2)) - (2)/(243 * (1 - sh)**3) * (2 * sqrt( z - 1) * (-4 +
9 * sh - 15 * sh**2 + 4 * sh**3) * acot(sqrt(z - 1)) + 9 * sh**3 *
log(sh)**2 + 18 * pi * 1j * sh * (1 - 2 * sh) * log(sh)) + (2 * sh)/(243 *
(1 - sh)**4) * (36 * acot( sqrt(z - 1))**2 + pi**2 * (-4 + 9 * sh - 9 *
sh**2 + 3 * sh**3)))