本文整理匯總了Python中cloudpickle.load方法的典型用法代碼示例。如果您正苦於以下問題:Python cloudpickle.load方法的具體用法?Python cloudpickle.load怎麽用?Python cloudpickle.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cloudpickle
的用法示例。
在下文中一共展示了cloudpickle.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def load(cls, directory: str):
with open(os.path.join(directory, 'elmo.pkl'), 'rb') as f:
params = cloudpickle.load(f)
guesser = ElmoGuesser(params['config_num'])
guesser.class_to_i = params['class_to_i']
guesser.i_to_class = params['i_to_class']
guesser.random_seed = params['random_seed']
guesser.dropout = params['dropout']
guesser.model = ElmoModel(len(guesser.i_to_class))
guesser.model.load_state_dict(torch.load(
os.path.join(directory, 'elmo.pt'), map_location=lambda storage, loc: storage
))
guesser.model.eval()
if CUDA:
guesser.model = guesser.model.cuda()
return guesser
示例2: extend_and_update
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def extend_and_update(self, **train_kwargs) -> int:
"""Extend internal batch of data and train.
Specifically, this method will load new transitions (if necessary), train
the model for a while, and advance the round counter. If there are no fresh
demonstrations in the demonstration directory for the current round, then
this will raise a `NeedsDemosException` instead of training or advancing
the round counter. In that case, the user should call
`.get_trajectory_collector()` and use the returned
`InteractiveTrajectoryCollector` to produce a new set of demonstrations for
the current interaction round.
Arguments:
**train_kwargs: arguments to pass to `BC.train()`.
Returns:
round_num: new round number after advancing the round counter.
"""
tf.logging.info("Loading demonstrations")
self._try_load_demos()
tf.logging.info(f"Training at round {self.round_num}")
self.bc_trainer.train(**train_kwargs)
self.round_num += 1
tf.logging.info(f"New round number is {self.round_num}")
return self.round_num
示例3: _setup_load_operations
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def _setup_load_operations(self):
"""
Create tensorflow operations for loading model parameters
"""
# Assume tensorflow graphs are static -> check
# that we only call this function once
if self._param_load_ops is not None:
raise RuntimeError("Parameter load operations have already been created")
# For each loadable parameter, create appropiate
# placeholder and an assign op, and store them to
# self.load_param_ops as dict of variable.name -> (placeholder, assign)
loadable_parameters = self.get_parameter_list()
# Use OrderedDict to store order for backwards compatibility with
# list-based params
self._param_load_ops = OrderedDict()
with self.graph.as_default():
for param in loadable_parameters:
placeholder = tf.placeholder(dtype=param.dtype, shape=param.shape)
# param.name is unique (tensorflow variables have unique names)
self._param_load_ops[param.name] = (placeholder, param.assign(placeholder))
示例4: load
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def load(cls, load_path, env=None, custom_objects=None, **kwargs):
"""
Load the model from file
:param load_path: (str or file-like) the saved parameter location
:param env: (Gym Environment) the new environment to run the loaded model on
(can be None if you only need prediction from a trained model)
:param custom_objects: (dict) Dictionary of objects to replace
upon loading. If a variable is present in this dictionary as a
key, it will not be deserialized and the corresponding item
will be used instead. Similar to custom_objects in
`keras.models.load_model`. Useful when you have an object in
file that can not be deserialized.
:param kwargs: extra arguments to change the model when loading
"""
raise NotImplementedError()
示例5: _load_from_file_cloudpickle
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def _load_from_file_cloudpickle(load_path):
"""Legacy code for loading older models stored with cloudpickle
:param load_path: (str or file-like) where from to load the file
:return: (dict, OrderedDict) Class parameters and model parameters
"""
if isinstance(load_path, str):
if not os.path.exists(load_path):
if os.path.exists(load_path + ".pkl"):
load_path += ".pkl"
else:
raise ValueError("Error: the file {} could not be found".format(load_path))
with open(load_path, "rb") as file_:
data, params = cloudpickle.load(file_)
else:
# Here load_path is a file-like object, not a path
data, params = cloudpickle.load(load_path)
return data, params
示例6: load
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def load(path):
with open(path, "rb") as f:
model_data, act_params = cloudpickle.load(f)
act = deepq.build_act(**act_params)
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
sess.__enter__()
with tempfile.TemporaryDirectory() as td:
arc_path = os.path.join(td, "packed.zip")
with open(arc_path, "wb") as f:
f.write(model_data)
zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
load_state(os.path.join(td, "model"))
return ActWrapper(act, act_params)
示例7: load
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def load(self, models_dir):
try:
del self.model
tf.keras.backend.clear_session()
self.model = tf.keras.models.load_model(
os.path.join(models_dir, "tf_intent_model.hd5"), compile=True)
self.graph = tf.get_default_graph()
print("Tf model loaded")
with open(os.path.join(models_dir, "labels.pkl"), 'rb') as f:
self.label_encoder = cloudpickle.load(f)
print("Labels model loaded")
except IOError:
return False
示例8: _load_model
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def _load_model(model_path, keras_module, **kwargs):
keras_models = importlib.import_module(keras_module.__name__ + ".models")
custom_objects = kwargs.pop("custom_objects", {})
custom_objects_path = None
if os.path.isdir(model_path):
if os.path.isfile(os.path.join(model_path, _CUSTOM_OBJECTS_SAVE_PATH)):
custom_objects_path = os.path.join(model_path, _CUSTOM_OBJECTS_SAVE_PATH)
model_path = os.path.join(model_path, _MODEL_SAVE_PATH)
if custom_objects_path is not None:
import cloudpickle
with open(custom_objects_path, "rb") as in_f:
pickled_custom_objects = cloudpickle.load(in_f)
pickled_custom_objects.update(custom_objects)
custom_objects = pickled_custom_objects
from distutils.version import StrictVersion
if StrictVersion(keras_module.__version__.split('-')[0]) >= StrictVersion("2.2.3"):
# NOTE: Keras 2.2.3 does not work with unicode paths in python2. Pass in h5py.File instead
# of string to avoid issues.
import h5py
with h5py.File(os.path.abspath(model_path), "r") as model_path:
return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs)
else:
# NOTE: Older versions of Keras only handle filepath.
return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs)
示例9: load
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def load(path):
with open(path, "rb") as f:
model_data, act_params = cloudpickle.load(f)
act = deepq.build_act(**act_params)
sess = tf.Session()
sess.__enter__()
with tempfile.TemporaryDirectory() as td:
arc_path = os.path.join(td, "packed.zip")
with open(arc_path, "wb") as f:
f.write(model_data)
zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
load_state(os.path.join(td, "model"))
return ActWrapper(act, act_params)
示例10: load_act
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def load_act(path):
with open(path, "rb") as f:
model_data, act_params = cloudpickle.load(f)
act = deepq.build_act(**act_params)
sess = tf.Session()
sess.__enter__()
with tempfile.TemporaryDirectory() as td:
arc_path = os.path.join(td, "packed.zip")
with open(arc_path, "wb") as f:
f.write(model_data)
zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
load_state(os.path.join(td, "model"))
return ActWrapper(act, act_params)
示例11: load
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def load(cls, directory: str):
with open(os.path.join(directory, 'rnn.pkl'), 'rb') as f:
params = cloudpickle.load(f)
guesser = RnnGuesser(params['config_num'])
guesser.page_field = params['page_field']
guesser.qanta_id_field = params['qanta_id_field']
guesser.text_field = params['text_field']
guesser.n_classes = params['n_classes']
guesser.gradient_clip = params['gradient_clip']
guesser.n_hidden_units = params['n_hidden_units']
guesser.n_hidden_layers = params['n_hidden_layers']
guesser.nn_dropout = params['nn_dropout']
guesser.use_wiki = params['use_wiki']
guesser.n_wiki_sentences = params['n_wiki_sentences']
guesser.wiki_title_replace_token = params['wiki_title_replace_token']
guesser.lowercase = params['lowercase']
guesser.random_seed = params['random_seed']
guesser.model = RnnModel(
guesser.n_classes,
text_field=guesser.text_field,
init_embeddings=False, emb_dim=300,
n_hidden_layers=guesser.n_hidden_layers,
n_hidden_units=guesser.n_hidden_units
)
guesser.model.load_state_dict(torch.load(
os.path.join(directory, 'rnn.pt'), map_location=lambda storage, loc: storage
))
guesser.model.eval()
if CUDA:
guesser.model = guesser.model.cuda()
return guesser
示例12: _load_trajectory
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def _load_trajectory(npz_path: str) -> types.Trajectory:
"""Load a single trajectory from a compressed Numpy file."""
np_data = np.load(npz_path, allow_pickle=True)
has_rew = "rews" in np_data
cls = types.TrajectoryWithRew if has_rew else types.Trajectory
return cls(**dict(np_data.items()))
示例13: reconstruct_trainer
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def reconstruct_trainer(cls, scratch_dir: str) -> "DAggerTrainer":
"""Reconstruct trainer from the latest snapshot in some working directory.
Args:
scratch_dir: path to the working directory created by a previous run of
this algorithm. The directory should contain a
`checkpoint-latest.pkl` file.
Returns:
trainer: a reconstructed `DAggerTrainer` with the same state as the
previously-saved one.
"""
checkpoint_path = os.path.join(scratch_dir, "checkpoint-latest.pkl")
with open(checkpoint_path, "rb") as fp:
saved_trainer = cloudpickle.load(fp)
# reconstruct from old init args
trainer = cls(**saved_trainer["init_args"])
# set TF variables
set_tf_vars(
values=saved_trainer["variable_values"],
tf_vars=trainer._vars,
sess=trainer.bc_trainer.sess,
)
for attr_name in cls.SAVE_ATTRS:
attr_value = saved_trainer["saved_attrs"][attr_name]
setattr(trainer, attr_name, attr_value)
return trainer
示例14: set_tf_vars
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def set_tf_vars(
*,
values: List[np.ndarray],
scope: Optional[str] = None,
tf_vars: Optional[List[tf.Variable]] = None,
sess: Optional[tf.Session] = None,
):
"""Set a collection of variables to take the values in `values`.
Variables can be either specified by scope or passed directly into the
function as a list. Variables and values will be matched based on the order
in which they appear in their respective collections, so there must be as
many values as variables.
Args:
values: list of values to load into variables.
scope: scope to collect variables from. Either this argument xor
`tf_vars` must be given.
tf_vars: explicit list of TF variables to write to. Mutex with `scope`.
sess: TF session to use, if not the default.
"""
if scope is not None:
assert tf_vars is None, "must give either `tf_vars` xor `scope` kwargs"
tf_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope)
else:
assert tf_vars is not None, "must give either `tf_vars` xor `scope` kwargs"
assert len(tf_vars) == len(values), (
f"{len(tf_vars)} tf variables but " f"{len(values)} values supplied"
)
sess = sess or tf.get_default_session()
assert sess is not None, "must supply session or have one in context"
placeholders = [tf.placeholder(shape=v.shape, dtype=v.dtype) for v in tf_vars]
assign_ops = [tf.assign(var, ph) for var, ph in zip(tf_vars, placeholders)]
sess.run(
assign_ops, feed_dict={ph: value for ph, value in zip(placeholders, values)}
)
示例15: reconstruct_policy
# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import load [as 別名]
def reconstruct_policy(
policy_path: str, sess: Optional[tf.Session] = None,
) -> BasePolicy:
"""Reconstruct a saved policy.
Args:
policy_path: path a policy produced by `.save_policy()`.
sess: optional session to construct policy under,
if not the default session.
Returns:
policy: policy with reloaded weights.
"""
if sess is None:
sess = tf.get_default_session()
assert sess is not None, "must supply session via kwarg or context mgr"
# re-read data from dict
with open(policy_path, "rb") as fp:
loaded_pickle = cloudpickle.load(fp)
# construct the policy class
klass = loaded_pickle["class"]
kwargs = loaded_pickle["kwargs"]
with tf.variable_scope("reconstructed_policy"):
rv_pol = klass(sess=sess, **kwargs)
inner_scope = tf.get_variable_scope().name
# set values for the new policy's parameters
param_values = loaded_pickle["params"]
set_tf_vars(values=param_values, scope=inner_scope, sess=sess)
return rv_pol