當前位置: 首頁>>代碼示例>>Python>>正文


Python cloudpickle.__version__方法代碼示例

本文整理匯總了Python中cloudpickle.__version__方法的典型用法代碼示例。如果您正苦於以下問題:Python cloudpickle.__version__方法的具體用法?Python cloudpickle.__version__怎麽用?Python cloudpickle.__version__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cloudpickle的用法示例。


在下文中一共展示了cloudpickle.__version__方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_args

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def get_args(key=None, default=None):
    args = __get_arg_config()

    if args.args_data:
        if args.use_cloudpickle:
            import cloudpickle
            assert args.cloudpickle_version == cloudpickle.__version__, "Cloudpickle versions do not match! (host) %s vs (remote) %s" % (args.cloudpickle_version, cloudpickle.__version__)
            data = cloudpickle.loads(base64.b64decode(args.args_data))
        else:
            data = pickle.loads(base64.b64decode(args.args_data))
    else:
        data = {}

    if key is not None:
        return data.get(key, default)
    return data 
開發者ID:jonasrothfuss,項目名稱:ProMP,代碼行數:18,代碼來源:experiment.py

示例2: encode_args

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def encode_args(call_args, cloudpickle=False):
    """
    Encode call_args dictionary as a base64 string
    """
    assert isinstance(call_args, dict)

    if cloudpickle:
        import cloudpickle
        cpickle_version = cloudpickle.__version__
        data = base64.b64encode(cloudpickle.dumps(call_args)).decode("utf-8")
    else:
        data = base64.b64encode(pickle.dumps(call_args)).decode("utf-8")
        cpickle_version = 'n/a'
    return data, cpickle_version

# These are arguments passed in from launch_python 
開發者ID:jonasrothfuss,項目名稱:ProMP,代碼行數:18,代碼來源:experiment.py

示例3: _load_model

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def _load_model(model_path, keras_module, **kwargs):
    keras_models = importlib.import_module(keras_module.__name__ + ".models")
    custom_objects = kwargs.pop("custom_objects", {})
    custom_objects_path = None
    if os.path.isdir(model_path):
        if os.path.isfile(os.path.join(model_path, _CUSTOM_OBJECTS_SAVE_PATH)):
            custom_objects_path = os.path.join(model_path, _CUSTOM_OBJECTS_SAVE_PATH)
        model_path = os.path.join(model_path, _MODEL_SAVE_PATH)
    if custom_objects_path is not None:
        import cloudpickle
        with open(custom_objects_path, "rb") as in_f:
            pickled_custom_objects = cloudpickle.load(in_f)
            pickled_custom_objects.update(custom_objects)
            custom_objects = pickled_custom_objects
    from distutils.version import StrictVersion
    if StrictVersion(keras_module.__version__.split('-')[0]) >= StrictVersion("2.2.3"):
        # NOTE: Keras 2.2.3 does not work with unicode paths in python2. Pass in h5py.File instead
        # of string to avoid issues.
        import h5py
        with h5py.File(os.path.abspath(model_path), "r") as model_path:
            return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs)
    else:
        # NOTE: Older versions of Keras only handle filepath.
        return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:26,代碼來源:keras.py

示例4: get_default_conda_env

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def get_default_conda_env(include_cloudpickle=False):
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import fastai
    pip_deps = None
    if include_cloudpickle:
        import cloudpickle
        pip_deps = ["cloudpickle=={}".format(cloudpickle.__version__)]
    return _mlflow_conda_env(
        additional_conda_deps=[
            "fastai={}".format(fastai.__version__),
        ],
        additional_pip_deps=pip_deps,
        additional_conda_channels=None
    ) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:fastai.py

示例5: get_default_conda_env

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def get_default_conda_env():
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import torch
    import torchvision

    return _mlflow_conda_env(
        additional_conda_deps=[
            "pytorch={}".format(torch.__version__),
            "torchvision={}".format(torchvision.__version__),
        ],
        additional_pip_deps=[
            # We include CloudPickle in the default environment because
            # it's required by the default pickle module used by `save_model()`
            # and `log_model()`: `mlflow.pytorch.pickle_module`.
            "cloudpickle=={}".format(cloudpickle.__version__)
        ],
        additional_conda_channels=[
            "pytorch",
        ]) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:24,代碼來源:__init__.py

示例6: get_default_conda_env

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def get_default_conda_env(include_cloudpickle=False):
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import sklearn
    pip_deps = None
    if include_cloudpickle:
        import cloudpickle
        pip_deps = ["cloudpickle=={}".format(cloudpickle.__version__)]
    return _mlflow_conda_env(
        additional_conda_deps=[
            "scikit-learn={}".format(sklearn.__version__),
        ],
        additional_pip_deps=pip_deps,
        additional_conda_channels=None
    ) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:19,代碼來源:sklearn.py

示例7: dumps_with_help

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def dumps_with_help(obj):
    if cloudpickle.__version__ != '0.5.2':
        raise RuntimeError(
            'cloudpickle version 0.5.2 is required, please run `pip install cloudpickle==0.5.2`')
    try:
        return cloudpickle.dumps(obj)
    except Exception:
        raise RuntimeError(
            'Failed to cloudpickle %s. Possible fixes: (1) remove super() from yours script.' % obj) 
開發者ID:openai,項目名稱:EPG,代碼行數:11,代碼來源:launcher.py

示例8: get_default_conda_env

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def get_default_conda_env(include_cloudpickle=False, keras_module=None):
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import tensorflow as tf
    conda_deps = []  # if we use tf.keras we only need to declare dependency on tensorflow
    pip_deps = []
    if keras_module is None:
        import keras
        keras_module = keras
    if keras_module.__name__ == "keras":
        # Temporary fix: the created conda environment has issues installing keras >= 2.3.1
        if LooseVersion(keras_module.__version__) < LooseVersion('2.3.1'):
            conda_deps.append("keras=={}".format(keras_module.__version__))
        else:
            pip_deps.append("keras=={}".format(keras_module.__version__))
    if include_cloudpickle:
        import cloudpickle
        pip_deps.append("cloudpickle=={}".format(cloudpickle.__version__))
    # Temporary fix: conda-forge currently does not have tensorflow > 1.14
    # The Keras pyfunc representation requires the TensorFlow
    # backend for Keras. Therefore, the conda environment must
    # include TensorFlow
    if LooseVersion(tf.__version__) <= LooseVersion('1.13.2'):
        conda_deps.append("tensorflow=={}".format(tf.__version__))
    else:
        pip_deps.append("tensorflow=={}".format(tf.__version__))

    return _mlflow_conda_env(
        additional_conda_deps=conda_deps,
        additional_pip_deps=pip_deps,
        additional_conda_channels=None) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:35,代碼來源:keras.py

示例9: _load_pyfunc

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def _load_pyfunc(path):
    """
    Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``.

    :param path: Local filesystem path to the MLflow Model with the ``keras`` flavor.
    """
    import tensorflow as tf
    if os.path.isfile(os.path.join(path, _KERAS_MODULE_SPEC_PATH)):
        with open(os.path.join(path, _KERAS_MODULE_SPEC_PATH), "r") as f:
            keras_module = importlib.import_module(f.read())
    else:
        import keras
        keras_module = keras

    K = importlib.import_module(keras_module.__name__ + ".backend")
    if keras_module.__name__ == "tensorflow.keras" or K.backend() == 'tensorflow':
        if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
            graph = tf.Graph()
            sess = tf.Session(graph=graph)
            # By default tf backed models depend on the global graph and session.
            # We create an use new Graph and Session and store them with the model
            # This way the model is independent on the global state.
            with graph.as_default():
                with sess.as_default():  # pylint:disable=not-context-manager
                    K.set_learning_phase(0)
                    m = _load_model(path, keras_module=keras_module, compile=False)
                    return _KerasModelWrapper(m, graph, sess)
        else:
            K.set_learning_phase(0)
            m = _load_model(path, keras_module=keras_module, compile=False)
            return _KerasModelWrapper(m, None, None)

    else:
        raise MlflowException("Unsupported backend '%s'" % K._BACKEND) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:36,代碼來源:keras.py

示例10: get_default_conda_env

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def get_default_conda_env():
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model() <mlflow.pyfunc.save_model>`
             and :func:`log_model() <mlflow.pyfunc.log_model>` when a user-defined subclass of
             :class:`PythonModel` is provided.
    """
    return _mlflow_conda_env(
        additional_conda_deps=None,
        additional_pip_deps=[
            "cloudpickle=={}".format(cloudpickle.__version__),
        ],
        additional_conda_channels=None) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:15,代碼來源:model.py

示例11: _load_pyfunc

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def _load_pyfunc(model_path):
    pyfunc_config = _get_flavor_configuration(
            model_path=model_path, flavor_name=mlflow.pyfunc.FLAVOR_NAME)

    python_model_cloudpickle_version = pyfunc_config.get(CONFIG_KEY_CLOUDPICKLE_VERSION, None)
    if python_model_cloudpickle_version is None:
        mlflow.pyfunc._logger.warning(
            "The version of CloudPickle used to save the model could not be found in the MLmodel"
            " configuration")
    elif python_model_cloudpickle_version != cloudpickle.__version__:
        # CloudPickle does not have a well-defined cross-version compatibility policy. Micro version
        # releases have been known to cause incompatibilities. Therefore, we match on the full
        # library version
        mlflow.pyfunc._logger.warning(
            "The version of CloudPickle that was used to save the model, `CloudPickle %s`, differs"
            " from the version of CloudPickle that is currently running, `CloudPickle %s`, and may"
            " be incompatible",
            python_model_cloudpickle_version, cloudpickle.__version__)

    python_model_subpath = pyfunc_config.get(CONFIG_KEY_PYTHON_MODEL, None)
    if python_model_subpath is None:
        raise MlflowException(
            "Python model path was not specified in the model configuration")
    with open(os.path.join(model_path, python_model_subpath), "rb") as f:
        python_model = cloudpickle.load(f)

    artifacts = {}
    for saved_artifact_name, saved_artifact_info in\
            pyfunc_config.get(CONFIG_KEY_ARTIFACTS, {}).items():
        artifacts[saved_artifact_name] = os.path.join(
            model_path, saved_artifact_info[CONFIG_KEY_ARTIFACT_RELATIVE_PATH])

    context = PythonModelContext(artifacts=artifacts)
    python_model.load_context(context=context)
    return _PythonModelPyfuncWrapper(python_model=python_model, context=context) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:37,代碼來源:model.py

示例12: _conda_env

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def _conda_env():
    # NB: We need mlflow as a dependency in the environment.
    return _mlflow_conda_env(
        additional_conda_deps=None,
        install_mlflow=False,
        additional_pip_deps=[
            "-e " + os.path.dirname(mlflow.__path__[0]),
            "cloudpickle=={}".format(cloudpickle.__version__),
            "scikit-learn=={}".format(sklearn.__version__)
        ],
        additional_conda_channels=None) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:13,代碼來源:test_model_export_with_class_and_artifacts.py

示例13: test_load_model_with_differing_cloudpickle_version_at_micro_granularity_logs_warning

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def test_load_model_with_differing_cloudpickle_version_at_micro_granularity_logs_warning(
        model_path):
    class TestModel(mlflow.pyfunc.PythonModel):
        def predict(self, context, model_input):
            return model_input

    mlflow.pyfunc.save_model(path=model_path, python_model=TestModel())
    saver_cloudpickle_version = "0.5.8"
    model_config_path = os.path.join(model_path, "MLmodel")
    model_config = Model.load(model_config_path)
    model_config.flavors[mlflow.pyfunc.FLAVOR_NAME][
        mlflow.pyfunc.model.CONFIG_KEY_CLOUDPICKLE_VERSION] = saver_cloudpickle_version
    model_config.save(model_config_path)

    log_messages = []

    def custom_warn(message_text, *args, **kwargs):
        log_messages.append(message_text % args % kwargs)

    loader_cloudpickle_version = "0.5.7"
    with mock.patch("mlflow.pyfunc._logger.warning") as warn_mock, \
            mock.patch("cloudpickle.__version__") as cloudpickle_version_mock:
        cloudpickle_version_mock.__str__ = lambda *args, **kwargs: loader_cloudpickle_version
        warn_mock.side_effect = custom_warn
        mlflow.pyfunc.load_pyfunc(model_uri=model_path)

    assert any([
        "differs from the version of CloudPickle that is currently running" in log_message and
        saver_cloudpickle_version in log_message and
        loader_cloudpickle_version in log_message
        for log_message in log_messages
    ]) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:34,代碼來源:test_model_export_with_class_and_artifacts.py

示例14: log_explanation

# 需要導入模塊: import cloudpickle [as 別名]
# 或者: from cloudpickle import __version__ [as 別名]
def log_explanation(name, explanation):
    """Log the explanation to MLflow using MLflow model logging.

    :param name: The name of the explanation. Will be used as a directory name.
    :type name: str
    :param explanation: The explanation object to log.
    :type explanation: Explanation
    """

    try:
        from mlflow.models import Model
    except ImportError as e:
        raise Exception("Could not log_explanation to mlflow. Missing mlflow dependency, "
                        "pip install mlflow to resolve the error: {}.".format(e))
    import cloudpickle as pickle

    with TemporaryDirectory() as tempdir:
        path = os.path.join(tempdir, 'explanation')
        save_explanation(explanation, path, exist_ok=True)

        conda_env = {
            "name": "mlflow-env",
            "channels": ["defaults"],
            "dependencies": [
                "pip",
                {
                    "pip": [
                        "interpret-community=={}".format(interpret_community.__version__),
                        "cloudpickle=={}".format(pickle.__version__)]
                }
            ]
        }
        conda_path = os.path.join(tempdir, "conda.yaml")
        with open(conda_path, "w") as stream:
            yaml.dump(conda_env, stream)
        kwargs = {'interpret_community_metadata': _get_explanation_metadata(explanation)}
        Model.log(name,
                  flavor=interpret_community.mlflow,
                  loader_module='interpret_community.mlflow',
                  data_path=path,
                  conda_env=conda_path,
                  **kwargs) 
開發者ID:interpretml,項目名稱:interpret-community,代碼行數:44,代碼來源:mlflow.py


注:本文中的cloudpickle.__version__方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。