當前位置: 首頁>>代碼示例>>Python>>正文


Python attacks.FastGradientMethod方法代碼示例

本文整理匯總了Python中cleverhans.attacks.FastGradientMethod方法的典型用法代碼示例。如果您正苦於以下問題:Python attacks.FastGradientMethod方法的具體用法?Python attacks.FastGradientMethod怎麽用?Python attacks.FastGradientMethod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cleverhans.attacks的用法示例。


在下文中一共展示了attacks.FastGradientMethod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_feature_pairing

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def test_feature_pairing(self):
        fgsm = FastGradientMethod(self.model)
        attack = lambda x: fgsm.generate(x)
        loss = FeaturePairing(self.model, weight=0.1, attack=attack)
        l = loss.fprop(self.x, self.y)
        with tf.Session() as sess:
            vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
            vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
        self.assertClose(vl1, sum([4.296023369, 2.963884830]) / 2., atol=1e-6)
        self.assertClose(vl2, sum([4.296023369, 2.963884830]) / 2., atol=1e-6)

        loss = FeaturePairing(self.model, weight=10., attack=attack)
        l = loss.fprop(self.x, self.y)
        with tf.Session() as sess:
            vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
            vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
        self.assertClose(vl1, sum([4.333082676, 3.00094414]) / 2., atol=1e-6)
        self.assertClose(vl2, sum([4.333082676, 3.00094414]) / 2., atol=1e-6) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:test_defenses.py

示例2: build_adv

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def build_adv(make_obs_tf, q_func, num_actions, epsilon, noisy):
    with tf.variable_scope('deepq', reuse=tf.AUTO_REUSE):
        obs_tf_in = U.ensure_tf_input(make_obs_tf("observation"))
        stochastic_ph_adv = tf.placeholder(tf.bool, (), name="stochastic_adv")
        update_eps_ph_adv = tf.placeholder(tf.float32, (), name="update_eps_adv")
        eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
        update_eps_expr_adv = eps.assign(tf.cond(update_eps_ph_adv >= 0, lambda: update_eps_ph_adv, lambda: eps))
        print ("==========================================")

        #def wrapper(x):
        #    return q_func(x, num_actions, scope="q_func", reuse=True, concat_softmax=True, noisy=noisy)
        adversary = FastGradientMethod(q_func(obs_tf_in.get(), num_actions, scope="q_func", reuse=True, concat_softmax=True, noisy=noisy), sess=U.get_session())
        adv_observations = adversary.generate(obs_tf_in.get(), eps=epsilon, clip_min=0, clip_max=1.0) * 255.0
        craft_adv_obs = U.function(inputs=[obs_tf_in, stochastic_ph_adv, update_eps_ph_adv],
                        outputs=adv_observations,
                        givens={update_eps_ph_adv: -1.0, stochastic_ph_adv: True},
                        updates=[update_eps_expr_adv])
        return craft_adv_obs

####################### 
開發者ID:behzadanksu,項目名稱:rl-attack,代碼行數:22,代碼來源:build_graph.py

示例3: test_feature_pairing

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def test_feature_pairing(self):
    sess = tf.Session()
    fgsm = FastGradientMethod(self.model, sess=sess)

    def attack(x):
      return fgsm.generate(x)
    loss = FeaturePairing(self.model, weight=0.1, attack=attack)
    l = loss.fprop(self.x, self.y)
    vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
    vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
    self.assertClose(vl1, sum([4.296023369, 2.963884830]) / 2., atol=1e-6)
    self.assertClose(vl2, sum([4.296023369, 2.963884830]) / 2., atol=1e-6)

    loss = FeaturePairing(self.model, weight=10., attack=attack)
    l = loss.fprop(self.x, self.y)
    vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
    vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
    self.assertClose(vl1, sum([4.333082676, 3.00094414]) / 2., atol=1e-6)
    self.assertClose(vl2, sum([4.333082676, 3.00094414]) / 2., atol=1e-6) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:21,代碼來源:test_defenses.py

示例4: create_adv_examples

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def create_adv_examples(model, input_t, x_to_adv, attack_dict):
    """
    This fn may seem bizarre and pointless, but the point of it is to
    enable the entire attack to be specified as a dict from the command line without
    editing this script, which is convenient for storing the settings used for an attack
    """
    if attack_dict['method'] == 'fgm':
        attack = attacks.FastGradientMethod(model, sess=K.get_session(), back='tf')
    elif attack_dict['method'] == 'bim':
        attack = attacks.BasicIterativeMethod(model, sess=K.get_session(), back='tf')
    elif attack_dict['method'] == 'mim':
        attack = attacks.MomentumIterativeMethod(model, sess=K.get_session(), back='tf')
    else:
        assert False, 'Current attack needs to be added to the create attack fn'
    adv_tensor = attack.generate(input_t, **{k: a for k, a in attack_dict.items() if
                                             k != 'method'})  # 'method' key for this fn use
    x_adv = batch_eval(adv_tensor, input_t, x_to_adv, batch_size=args.batch_size, verbose="Generating adv examples")
    return x_adv 
開發者ID:lsgos,項目名稱:uncertainty-adversarial-paper,代碼行數:20,代碼來源:ROC_curves_cats.py

示例5: setUp

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def setUp(self):
        super(TestFastGradientMethod, self).setUp()

        self.sess = tf.Session()
        self.model = SimpleModel()
        self.attack = FastGradientMethod(self.model, sess=self.sess) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:8,代碼來源:test_attacks.py

示例6: main

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def main(_):
  # Images for inception classifier are normalized to be in [-1, 1] interval,
  # eps is a difference between pixels so it should be in [0, 2] interval.
  # Renormalizing epsilon from [0, 255] to [0, 2].
  eps = 2.0 * FLAGS.max_epsilon / 255.0
  batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
  num_classes = 1001

  tf.logging.set_verbosity(tf.logging.INFO)

  with tf.Graph().as_default():
    # Prepare graph
    x_input = tf.placeholder(tf.float32, shape=batch_shape)

    model = InceptionModel(num_classes)

    fgsm = FastGradientMethod(model)
    x_adv = fgsm.generate(x_input, eps=eps, clip_min=-1., clip_max=1.)

    # Run computation
    saver = tf.train.Saver(slim.get_model_variables())
    session_creator = tf.train.ChiefSessionCreator(
        scaffold=tf.train.Scaffold(saver=saver),
        checkpoint_filename_with_path=FLAGS.checkpoint_path,
        master=FLAGS.master)

    with tf.train.MonitoredSession(session_creator=session_creator) as sess:
      for filenames, images in load_images(FLAGS.input_dir, batch_shape):
        adv_images = sess.run(x_adv, feed_dict={x_input: images})
        save_images(adv_images, filenames, FLAGS.output_dir) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:32,代碼來源:attack_fgsm.py

示例7: attack

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def attack(model, session, a):
    fgsm = FastGradientMethod(model, sess=session)
    image = a.original_image[np.newaxis]
    return fgsm.generate_np(image) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:6,代碼來源:main.py

示例8: __init__

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def __init__(self, model, dtypestr='float32', **kwargs):
        """
        Creates a FastGradientMethod instance in eager execution.
        :model: CNN network, should be an instance of
                cleverhans.model.Model, if not wrap
                the output to probs.
        :dtypestr: datatype in the string format.
        """
        del kwargs
        if not isinstance(model, Model):
            model = CallableModelWrapper(model, 'probs')

        super(FastGradientMethod, self).__init__(model, dtypestr) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:15,代碼來源:attacks_tfe.py

示例9: generate_fgsm_examples

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def generate_fgsm_examples(sess, model, x, y, X, Y, attack_params, verbose, attack_log_fpath):
    """
    Untargeted attack. Y is not needed.
    """
    fgsm = FastGradientMethod(model, back='tf', sess=sess)
    fgsm_params = {'eps': 0.1, 'ord': np.inf, 'y': None, 'clip_min': 0, 'clip_max': 1}
    fgsm_params = override_params(fgsm_params, attack_params)

    X_adv = fgsm.generate_np(X, **fgsm_params)
    return X_adv 
開發者ID:mzweilin,項目名稱:EvadeML-Zoo,代碼行數:12,代碼來源:cleverhans_wrapper.py

示例10: setUp

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def setUp(self):
    # Inheritance doesn't really work with tests.
    # nosetests always wants to run this class because it is a
    # CleverHansTest subclass, but this class is meant to just
    # be abstract.
    # Before this class was the tests for FastGradientMethod but
    # people kept inheriting from it for other attacks so it was
    # impossible to write tests specifically for FastGradientMethod.
    # pylint: disable=unidiomatic-typecheck
    if type(self) is CommonAttackProperties:
      raise SkipTest()

    super(CommonAttackProperties, self).setUp()
    self.sess = tf.Session()
    self.model = SimpleModel() 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:17,代碼來源:test_attacks.py

示例11: test_generate_respects_dtype

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def test_generate_respects_dtype(self):
    self.attack = FastGradientMethod(self.model, sess=self.sess,
                                     dtypestr='float64')
    x = tf.placeholder(dtype=tf.float64, shape=(100, 2))
    x_adv = self.attack.generate(x)
    self.assertEqual(x_adv.dtype, tf.float64) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:8,代碼來源:test_attacks.py

示例12: main

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def main(_):
  """Run the sample attack"""
  # Images for inception classifier are normalized to be in [-1, 1] interval,
  # eps is a difference between pixels so it should be in [0, 2] interval.
  # Renormalizing epsilon from [0, 255] to [0, 2].
  eps = 2.0 * FLAGS.max_epsilon / 255.0
  batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
  nb_classes = 1001

  tf.logging.set_verbosity(tf.logging.INFO)

  with tf.Graph().as_default():
    # Prepare graph
    x_input = tf.placeholder(tf.float32, shape=batch_shape)

    model = InceptionModel(nb_classes)

    fgsm = FastGradientMethod(model)
    x_adv = fgsm.generate(x_input, eps=eps, clip_min=-1., clip_max=1.)

    # Run computation
    saver = tf.train.Saver(slim.get_model_variables())
    session_creator = tf.train.ChiefSessionCreator(
        scaffold=tf.train.Scaffold(saver=saver),
        checkpoint_filename_with_path=FLAGS.checkpoint_path,
        master=FLAGS.master)

    with tf.train.MonitoredSession(session_creator=session_creator) as sess:
      for filenames, images in load_images(FLAGS.input_dir, batch_shape):
        adv_images = sess.run(x_adv, feed_dict={x_input: images})
        save_images(adv_images, filenames, FLAGS.output_dir) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:33,代碼來源:attack_fgsm.py

示例13: attack

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def attack(model, session, a):
  fgsm = FastGradientMethod(model, sess=session)
  image = a.original_image[np.newaxis]
  return fgsm.generate_np(image) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:6,代碼來源:main.py

示例14: __init__

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def __init__(self, model, dtypestr='float32', **kwargs):
    """
    Creates a FastGradientMethod instance in eager execution.
    :model: cleverhans.model.Model
    :dtypestr: datatype in the string format.
    """
    del kwargs
    if not isinstance(model, Model):
      wrapper_warning()
      model = CallableModelWrapper(model, 'probs')

    super(FastGradientMethod, self).__init__(model, dtypestr) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:14,代碼來源:attacks_tfe.py

示例15: main

# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import FastGradientMethod [as 別名]
def main(argv):
    checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)

    if checkpoint is None:
        raise ValueError("Couldn't find latest checkpoint in " +
                         FLAGS.checkpoint_dir)

    train_start = 0
    train_end = 60000
    test_start = 0
    test_end = 10000
    X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
                                                  train_end=train_end,
                                                  test_start=test_start,
                                                  test_end=test_end)

    assert Y_train.shape[1] == 10

    # NOTE: for compatibility with Madry Lab downloadable checkpoints,
    # we cannot enclose this in a scope or do anything else that would
    # change the automatic naming of the variables.
    model = MadryMNIST()

    x_input = tf.placeholder(tf.float32, shape=[None, 784])
    x_image = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
    y = tf.placeholder(tf.float32, shape=[None, 10])

    if FLAGS.attack_type == 'fgsm':
        fgsm = FastGradientMethod(model)
        fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.}
        adv_x = fgsm.generate(x_image, **fgsm_params)
    elif FLAGS.attack_type == 'bim':
        bim = BasicIterativeMethod(model)
        bim_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.,
                      'nb_iter': 50,
                      'eps_iter': .01}
        adv_x = bim.generate(x_image, **bim_params)
    else:
        raise ValueError(FLAGS.attack_type)
    preds_adv = model.get_probs(adv_x)

    saver = tf.train.Saver()

    with tf.Session() as sess:
        # Restore the checkpoint
        saver.restore(sess, checkpoint)

        # Evaluate the accuracy of the MNIST model on adversarial examples
        eval_par = {'batch_size': FLAGS.batch_size}
        t1 = time.time()
        acc = model_eval(
            sess, x_image, y, preds_adv, X_test, Y_test, args=eval_par)
        t2 = time.time()
        print("Took", t2 - t1, "seconds")
        print('Test accuracy on adversarial examples: %0.4f\n' % acc) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:57,代碼來源:attack_model.py


注:本文中的cleverhans.attacks.FastGradientMethod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。