本文整理匯總了Python中cleverhans.attacks.CarliniWagnerL2方法的典型用法代碼示例。如果您正苦於以下問題:Python attacks.CarliniWagnerL2方法的具體用法?Python attacks.CarliniWagnerL2怎麽用?Python attacks.CarliniWagnerL2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cleverhans.attacks
的用法示例。
在下文中一共展示了attacks.CarliniWagnerL2方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: cw_attack
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def cw_attack(sess, x, logits, n_ae, final=False):
cw_attack_obj = CarliniWagnerL2(logits, sess=sess, back='tf')
if final:
cw_params = {'binary_search_steps': 9,
'max_iterations': 2000,
'learning_rate': 0.01,
'initial_const': 1.0,
'abort_early': True,
'batch_size': n_ae
}
else:
cw_params = {'binary_search_steps': 5,
'max_iterations': 500,
'learning_rate': 0.01,
'initial_const': 1.0,
'batch_size': n_ae # need to specify, since CarliniWagnerL2 is not completely symbolic
}
adv_ex_tensor = cw_attack_obj.generate(x, **cw_params)
adv_ex_tensor = tf.stop_gradient(adv_ex_tensor)
return adv_ex_tensor
示例2: setUp
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def setUp(self):
super(TestCarliniWagnerL2, self).setUp()
self.sess = tf.Session()
self.model = SimpleModel()
self.attack = CarliniWagnerL2(self.model, sess=self.sess)
示例3: test_generate_np_high_confidence_targeted_examples
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def test_generate_np_high_confidence_targeted_examples(self):
trivial_model = TrivialModel()
for CONFIDENCE in [0, 2.3]:
x_val = np.random.rand(10, 1) - .5
x_val = np.array(x_val, dtype=np.float32)
feed_labs = np.zeros((10, 2))
feed_labs[np.arange(10), np.random.randint(0, 2, 10)] = 1
attack = CarliniWagnerL2(trivial_model, sess=self.sess)
x_adv = attack.generate_np(x_val,
max_iterations=100,
binary_search_steps=2,
learning_rate=1e-2,
initial_const=1,
clip_min=-10, clip_max=10,
confidence=CONFIDENCE,
y_target=feed_labs,
batch_size=10)
new_labs = self.sess.run(trivial_model.get_logits(x_adv))
good_labs = new_labs[np.arange(10), np.argmax(feed_labs, axis=1)]
bad_labs = new_labs[np.arange(
10), 1 - np.argmax(feed_labs, axis=1)]
self.assertClose(CONFIDENCE, np.min(good_labs - bad_labs),
atol=1e-1)
self.assertTrue(np.mean(np.argmax(new_labs, axis=1) ==
np.argmax(feed_labs, axis=1)) > .9)
示例4: test_generate_np_high_confidence_untargeted_examples
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def test_generate_np_high_confidence_untargeted_examples(self):
trivial_model = TrivialModel()
for CONFIDENCE in [0, 2.3]:
x_val = np.random.rand(10, 1) - .5
x_val = np.array(x_val, dtype=np.float32)
orig_labs = np.argmax(self.sess.run(trivial_model.get_logits(x_val)), axis=1)
attack = CarliniWagnerL2(trivial_model, sess=self.sess)
x_adv = attack.generate_np(x_val,
max_iterations=100,
binary_search_steps=2,
learning_rate=1e-2,
initial_const=1,
clip_min=-10, clip_max=10,
confidence=CONFIDENCE,
batch_size=10)
new_labs = self.sess.run(trivial_model.get_logits(x_adv))
good_labs = new_labs[np.arange(10), 1 - orig_labs]
bad_labs = new_labs[np.arange(10), orig_labs]
self.assertTrue(np.mean(np.argmax(new_labs, axis=1) == orig_labs)
== 0)
self.assertTrue(np.isclose(
0, np.min(good_labs - (bad_labs + CONFIDENCE)), atol=1e-1))
示例5: setUp
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def setUp(self):
super(TestCarliniWagnerL2, self).setUp()
self.sess = tf.Session()
self.model = SimpleModel()
self.attack = CarliniWagnerL2(self.model, sess=self.sess)
示例6: test_generate_np_high_confidence_targeted_examples
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def test_generate_np_high_confidence_targeted_examples(self):
trivial_model = TrivialModel()
for CONFIDENCE in [0, 2.3]:
x_val = np.random.rand(10, 1) - .5
x_val = np.array(x_val, dtype=np.float32)
feed_labs = np.zeros((10, 2))
feed_labs[np.arange(10), np.random.randint(0, 2, 10)] = 1
attack = CarliniWagnerL2(trivial_model, sess=self.sess)
x_adv = attack.generate_np(x_val,
max_iterations=100,
binary_search_steps=2,
learning_rate=1e-2,
initial_const=1,
clip_min=-10, clip_max=10,
confidence=CONFIDENCE,
y_target=feed_labs,
batch_size=10)
new_labs = self.sess.run(trivial_model.get_logits(x_adv))
good_labs = new_labs[np.arange(10), np.argmax(feed_labs, axis=1)]
bad_labs = new_labs[np.arange(
10), 1 - np.argmax(feed_labs, axis=1)]
self.assertClose(CONFIDENCE, np.min(good_labs - bad_labs),
atol=1e-1)
self.assertTrue(np.mean(np.argmax(new_labs, axis=1) ==
np.argmax(feed_labs, axis=1)) > .9)
示例7: test_generate_np_high_confidence_untargeted_examples
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def test_generate_np_high_confidence_untargeted_examples(self):
trivial_model = TrivialModel()
for CONFIDENCE in [0, 2.3]:
x_val = np.random.rand(10, 1) - .5
x_val = np.array(x_val, dtype=np.float32)
orig_labs = np.argmax(
self.sess.run(trivial_model.get_logits(x_val)), axis=1)
attack = CarliniWagnerL2(trivial_model, sess=self.sess)
x_adv = attack.generate_np(x_val,
max_iterations=100,
binary_search_steps=2,
learning_rate=1e-2,
initial_const=1,
clip_min=-10, clip_max=10,
confidence=CONFIDENCE,
batch_size=10)
new_labs = self.sess.run(trivial_model.get_logits(x_adv))
good_labs = new_labs[np.arange(10), 1 - orig_labs]
bad_labs = new_labs[np.arange(10), orig_labs]
self.assertTrue(np.mean(np.argmax(new_labs, axis=1) == orig_labs)
== 0)
self.assertTrue(np.isclose(
0, np.min(good_labs - (bad_labs + CONFIDENCE)), atol=1e-1))
示例8: evaluate_ch
# 需要導入模塊: from cleverhans import attacks [as 別名]
# 或者: from cleverhans.attacks import CarliniWagnerL2 [as 別名]
def evaluate_ch(model, config, sess, norm='l1', bound=None, verbose=True):
dataset = config['data']
num_eval_examples = config['num_eval_examples']
eval_batch_size = config['eval_batch_size']
if dataset == "mnist":
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
X = mnist.test.images[0:num_eval_examples, :].reshape(-1, 28, 28, 1)
Y = mnist.test.labels[0:num_eval_examples]
x_image = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
else:
import cifar10_input
data_path = config["data_path"]
cifar = cifar10_input.CIFAR10Data(data_path)
X = cifar.eval_data.xs[0:num_eval_examples, :].astype(np.float32) / 255.0
Y = cifar.eval_data.ys[0:num_eval_examples]
x_image = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
assert norm == 'l1'
if norm=='l2':
attack = CarliniWagnerL2(model, sess)
params = {'batch_size': eval_batch_size, 'binary_search_steps': 9}
else:
attack = ElasticNetMethod(model, sess, clip_min=0.0, clip_max=1.0)
params = {'beta': 1e-2,
'decision_rule': 'L1',
'batch_size': eval_batch_size,
'learning_rate': 1e-2,
'max_iterations': 1000}
if verbose:
set_log_level(logging.DEBUG, name="cleverhans")
y = tf.placeholder(tf.int64, shape=[None, 10])
params['y'] = y
adv_x = attack.generate(x_image, **params)
preds_adv = model.get_predicted_class(adv_x)
preds_nat = model.get_predicted_class(x_image)
all_preds, all_preds_adv, all_adv_x = batch_eval(
sess, [x_image, y], [preds_nat, preds_adv, adv_x], [X, one_hot(Y, 10)], batch_size=eval_batch_size)
print('acc nat', np.mean(all_preds == Y))
print('acc adv', np.mean(all_preds_adv == Y))
if dataset == "cifar10":
X *= 255.0
all_adv_x *= 255.0
if norm == 'l2':
lps = np.sqrt(np.sum(np.square(all_adv_x - X), axis=(1,2,3)))
else:
lps = np.sum(np.abs(all_adv_x - X), axis=(1,2,3))
print('mean lp: ', np.mean(lps))
for b in [bound, bound/2.0, bound/4.0, bound/8.0]:
print('lp={}, acc={}'.format(b, np.mean((all_preds_adv == Y) | (lps > b))))
all_corr_adv = (all_preds_adv == Y)
all_corr_nat = (all_preds == Y)
return all_corr_nat, all_corr_adv, lps