本文整理匯總了Python中clarifai.rest.ClarifaiApp方法的典型用法代碼示例。如果您正苦於以下問題:Python rest.ClarifaiApp方法的具體用法?Python rest.ClarifaiApp怎麽用?Python rest.ClarifaiApp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類clarifai.rest
的用法示例。
在下文中一共展示了rest.ClarifaiApp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: img_has_cat
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def img_has_cat(filename):
app = ClarifaiApp(api_key=settings.CLARIFAI_API_KEY)
model = app.models.get("general-v1.3")
try:
image = Image(file_obj=open(filename, 'rb'))
result = model.predict([image])
try:
items = result['outputs'][0]['data']['concepts']
for item in items:
if item['name'] == 'cat':
return True
else:
return False
except (IndexError):
return False
except (client.ApiError, FileNotFoundError):
return False
示例2: check_image
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def check_image(browser, clarifai_api_key, img_tags, logger, full_match=False):
"""Uses the link to the image to check for invalid content in the image"""
clarifai_api = ClarifaiApp(api_key=clarifai_api_key)
img_link = get_imagelink(browser)
# Uses Clarifai's v2 API
model = clarifai_api.models.get('general-v1.3')
image = ClImage(url=img_link)
result = model.predict([image])
clarifai_tags = [concept.get('name').lower() for concept in result[
'outputs'][0]['data']['concepts']]
for (tags, should_comment, comments) in img_tags:
if should_comment:
if given_tags_in_result(tags, clarifai_tags, full_match):
return True, comments
else:
if given_tags_in_result(tags, clarifai_tags, full_match):
logger.info('Not Commenting, Possibly contains: "{}".'.format(', '.join(list(set(clarifai_tags)&set(tags)))))
return False, []
return True, []
示例3: checkPhoto
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def checkPhoto(pictureURL, tag):
resp = twiml.Response()
photoApp = ClarifaiApp()
#all concepts attached to the item specified in photo database (i.e. answer key)
conceptGoals = [str(x) for x in mongo.db.photoGoals.find_one({"item":tag})["concepts"]]
model = photoApp.models.get(tag)
image = ClImage(url = pictureURL)
#all data associated with each concept: id, name, appid, and value
predictionData = json.loads(str(model.predict([image])))['outputs']['data']['concepts']
userConcepts = []
for x in predictionData:
userConcepts.append(x[1])
#all concepts included in user's photo
conceptsPresent = conceptGoals.intersection(userConcepts)
numbers = []
for x in conceptsPresent:
#threshold for approval is 51%
probability = predictionData["value"]
if probability > 0.5:
numbers.append(probability)
if numbers.length > 0:
return True
else:
return False
示例4: add_category
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def add_category(post):
app = ClarifaiApp(api_key='{ab1b812d1beb46ff8872acea4f341b4c}')
# Logo model
model = app.models.get('general-v1.3')
response = model.predict_by_url(url=post.image_url)
if response["status"]["code"] == 10000:
if response["outputs"]:
if response["outputs"][0]["data"]:
if response["outputs"][0]["data"]["concepts"]:
for index in range(0, len(response["outputs"][0]["data"]["concepts"])):
category = CategoryModel(post=post,
category_text=response["outputs"][0]["data"]["concepts"][index][
"name"])
category.save()
else:
print "No concepts list error."
else:
print "No data list error."
else:
print "No output lists error."
else:
print "Response code error."
#For validating the session
示例5: get_clarifai_api
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def get_clarifai_api():
return ClarifaiApp(settings.CLARIFAI_CLIENT_ID,
settings.CLARIFAI_CLIENT_SECRET)
示例6: get_clarifai_api
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def get_clarifai_api():
return ClarifaiApp(CLIENT_ID, CLIENT_SECRET)
示例7: labelImage
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def labelImage(self, imageURL):
app = ClarifaiApp()
d = app.tag_urls([imageURL])
#output list, value
count = 0
for key, value in d.iteritems():
if key == 'outputs':
subDict = value
break
for i in subDict:
for key, value in i.iteritems():
if key == 'data':
subDict = value
break
for key, value in subDict.iteritems():
if key == 'concepts':
subDict = value
break
for i in subDict:
for key, value in i.iteritems():
if key == 'name':
words.append(value)
if(len(words) % 4 == 0):
words.append('\n')
break
return words
示例8: main
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def main():
a = app(app_id=os.environ['CLARIFAI_CLIENT_ID'],
app_secret=os.environ['CLARIFAI_CLIENT_SECRET'])
models = a.models.get_all()
for m in models:
info = m.get_info()
model = info['model']
print(model['name'] + '\t' \
+ model['id'] + '\t' \
+ model['created_at'])
示例9: main
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def main():
app = ClarifaiApp()
#image_set = create_image_set('/Users/mehty/Desktop/UofThacks/face-shape-recognition/Heart/', ['heart-face'])
#app.inputs.bulk_create_images(image_set)
model = app.models.create(model_id="FACE-SHAPES", concepts=['heart-face'], not_concepts=['diamond-face'])
model.train()
#model = app.models.get('face-shapes')
#url = raw_input("base64 encoded image bytes: ")
#print model.predict_by_url(url = 'http://www.rd.com/wp-content/uploads/sites/2/2016/04/01-cat-wants-to-tell-you-laptop.jpg')['outputs'][0]['data']['concepts']
示例10: main
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def main():
app = ClarifaiApp()
model = app.models.get('general-v1.3')
bytes = raw_input("base64: ")
print model.predict_by_base64(bytes)['outputs'][0]['data']['concepts']
示例11: create_image_set
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def create_image_set(img_path):
app = ClarifaiApp()
model = app.models.get('general-v1.3')
images = {}
for file_path in glob(os.path.join(img_path, '*.jpg')):
print(file_path)
images[file_path] = model.predict_by_filename(file_path)['outputs'][0]['data']['concepts']
return images
示例12: prediction
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def prediction(bytes):
app = ClarifaiApp()
model = app.models.get('general-v1.3')
return model.predict_by_base64(bytes)['outputs'][0]['data']['concepts']
示例13: create_image_set
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def create_image_set(img_path):
app = ClarifaiApp()
model = app.models.get('general-v1.3')
images = {}
for file_path in glob(os.path.join(img_path, '*.jpg')):
#print(file_path)
images[file_path] = model.predict_by_filename(file_path)['outputs'][0]['data']['concepts']
return images
#print hairstyles
示例14: main
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def main():
photoApp = ClarifaiApp()
imagePaths = ['dogInStroller', 'happyCouple', 'stopSign', 'stuffedAnimal', 'baby']
#go through each search concept folder
for searchItem in imagePaths:
path = './pictures/' + searchItem
photoCollection = make_photo_collection(path, searchItem)
photoApp.inputs.bulk_create_images(photoCollection)
#***need to fix the make and train... not sure why clarifai is trying to charge?
#make_and_train(searchItem, photoApp)
#doesn't seem to be uploading all the pictures, fix this later
示例15: checkPhoto
# 需要導入模塊: from clarifai import rest [as 別名]
# 或者: from clarifai.rest import ClarifaiApp [as 別名]
def checkPhoto(pictureURL, tag):
resp = twiml.Response()
photoApp = ClarifaiApp()
#all concepts attached to the item specified in photo database (i.e. answer key)
with app.app_context():
conceptGoals = mongo.db.photoGoals.find_one({"item":tag})
model = photoApp.models.get(tag)
image = ClImage(url='https://samples.clarifai.com/metro-north.jpg')
#all data associated with each concept: id, name, appid, and value
predictionData = model.predict([image])['outputs'][0]['data']['concepts']
#['outputs']['data']['concepts']
#predictionData = predictionData.replace("'", '"')
#dataDict = json.loads(predictionData)
#concepts = predictionData.get('outputs')
print(predictionData)
#userConcepts = []
#for x in predictionData:
# userConcepts.append(x[1])
#all concepts included in user's photo
#conceptsPresent = conceptGoals.intersection(userConcepts)
#numbers = []
#for x in conceptsPresent:
#threshold for approval is 51%
# probability = predictionData["value"]
# if probability > 0.5:
# numbers.append(probability)
#if numbers.length > 2:
# return True
#else:
# return False